Tuesday, 31 December 2024

65.PROC TRANSPOSE | ID AND VAR STATEMENT

                          PROC TRANSPOSE | ID AND VAR STATEMENT

  

DATA USED IN THIS PROGRAM:

DATA NARROW;

 INPUT PET_OWNER$10. PET$ POPULATION;

 CARDS;

 MR.BLACK  DOG 2

 MR.BLACK  BIRD 1

 MRS.GREEN  FISH 5

 MR.WHITE  CAT 3

 ;

RUN;

PROC PRINT;RUN;


LOG:

NOTE: The data set WORK.NARROW has 4 observations and 3 variables.

NOTE: DATA statement used (Total process time):

      real time           0.01 seconds

      cpu time            0.01 seconds


RESULT:

                 The SAS System
ObsPET_OWNERPETPOPULATION
1MR.BLACKDOG2
2MR.BLACKBIRD1
3MRS.GREENFISH5
4MR.WHITECAT3


HERE I WANT TO TRANSPOSE ABOVE SYNTAX..

EG:

PROC TRANSPOSE DATA=NARROW OUT=NARROW_TRAN

                           NAME=COL_TRANSPOSED;
   VAR PET POPULATION;

   ID PET;

RUN;


LOG:


NOTE: Numeric variables in the input data set will be converted to character in the output data set.
NOTE: There were 4 observations read from the data set WORK.NARROW.
NOTE: The data set WORK.NARROW_TRAN has 2 observations and 5 variables.
NOTE: PROCEDURE TRANSPOSE used (Total process time):
      real time           0.01 seconds
      cpu time            0.01 seconds


RESULT:

                                                                   The SAS System

Obs COL_TRANSPOSED DOG BIRD FISH CAT
1 PET DOG BIRD FISH CAT
2 POPULATION 2 1 5 3


JUST VISIT THE PREVIOUS PROC TRANSPOSE IT WILL BE EASY TO UNDERSTAND AND PRACTICE...


QUESTIONS:

WHAT IS THE DIFFERENCE BETWEEN THIS OUTPUT AND PREVIOUS BLOG OUTPUT?



TRY THIS AND COMMENT ...


-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE: https://t.me/SasAll4You

Sunday, 29 December 2024

64.PROC TRANSPOSE | ID | VAR STATEMENTS

                           PROC TRANSPOSE | ID | VAR STATEMENTS


DATA USED IN THIS PROGRAM:

DATA NARROW;

 INPUT PET_OWNER$10. PET$ POPULATION;

 CARDS;

 MR.BLACK  DOG 2

 MR.BLACK  BIRD 1

 MRS.GREEN  FISH 5

 MR.WHITE  CAT 3

 ;

RUN;

PROC PRINT;RUN;


LOG:

NOTE: The data set WORK.NARROW has 4 observations and 3 variables.

NOTE: DATA statement used (Total process time):

      real time           0.01 seconds

      cpu time            0.01 seconds


RESULT:

                 The SAS System
ObsPET_OWNERPETPOPULATION
1MR.BLACKDOG2
2MR.BLACKBIRD1
3MRS.GREENFISH5
4MR.WHITECAT3


HERE I WANT TO TRANSPOSE ABOVE SYNTAX..

EG1:

PROC TRANSPOSE DATA=NARROW OUT=NARROW_TRAN03

                           NAME=COL_TRANSPOSED;

   ID PET;

RUN;

PROC PRINT;RUN;


LOG:


NOTE: There were 4 observations read from the data set WORK.NARROW.

NOTE: The data set WORK.NARROW_TRAN03 has 1 observations and 5 variables.

NOTE: PROCEDURE TRANSPOSE used (Total process time):

      real time           0.10 seconds

      cpu time            0.01 seconds


RESULT:HERE WE GOT NAMES OF ANIMALS COMPARE TO BEFORE BLOG 

                VISIT THAT  BLOG AND KNOW MORE ABOUT SAS TRANSPOSE


                                                                      The SAS System


Obs COL_TRANSPOSED DOG BIRD FISH CAT
1 POPULATION 2 1 5 3


EG2:

PROC TRANSPOSE DATA=NARROW OUT=NARROW_TRAN04

                                                                 NAME=COL_TRANSPOSED;

   VAR PET POPULATION;

RUN;

PROC PRINT;RUN;


LOG:


NOTE: Numeric variables in the input data set will be converted to character in the output data set.

NOTE: There were 4 observations read from the data set WORK.NARROW.

NOTE: The data set WORK.NARROW_TRAN04 has 2 observations and 5 variables.

NOTE: PROCEDURE TRANSPOSE used (Total process time):

      real time           0.07 seconds

      cpu time            0.00 seconds


RESULT:HERE WE GOT NAMES OF ANIMALS AS OBSERVATIONS COMPARE TO ABOVE                       RESULT   AND WE GOT VARIABLES AS COL1-COL4

                VISIT THAT  BLOG AND KNOW MORE ABOUT SAS TRANSPOSE


                                                                 The SAS System

Obs COL_TRANSPOSED COL1 COL2 COL3 COL4
1 PET DOG BIRD FISH CAT
2 POPULATION 2 1 5 3


QUESTIONS TO YOU :

1.WHAT IS ID STATEMENT DO?

2.WHY WAS PREFIX OPTION NOT NEEDED HERE?

3.TRANSPOSE TRANSPOSES NUMERIC VARS BY DEFAULT, WHY WAS A NUMERIC AND A CHARACTER VARIABLE TRANSPOSED HERE?




TRY THIS AND COMMENT ...


-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE: https://t.me/SasAll4You

Thursday, 26 December 2024

63.PROC TRANSPOSE | PREFIX | NAME OPTION

                          PROC TRANSPOSE | PREFIX | NAME OPTION

DATA USED IN THIS PROGRAM:

DATA NARROW;

 INPUT PET_OWNER$10. PET$ POPULATION;

 CARDS;

 MR.BLACK  DOG 2

 MR.BLACK  BIRD 1

 MRS.GREEN  FISH 5

 MR.WHITE  CAT 3

 ;

RUN;

PROC PRINT;RUN;


LOG:

NOTE: The data set WORK.NARROW has 4 observations and 3 variables.

NOTE: DATA statement used (Total process time):

      real time           0.01 seconds

      cpu time            0.01 seconds


RESULT:

                 The SAS System
Obs PET_OWNER PET POPULATION
1 MR.BLACK DOG 2
2 MR.BLACK BIRD 1
3 MRS.GREEN FISH 5
4 MR.WHITE CAT 3

HERE I WANT TO TRANSPOSE THE ABOVE DATA::


EG1:

PROC TRANSPOSE DATA=NARROW OUT=NARROW_TRAN;

RUN;


LOG:

NOTE: There were 4 observations read from the data set WORK.NARROW.

NOTE: The data set WORK.NARROW_TRAN has 1 observations and 5 variables.

NOTE: PROCEDURE TRANSPOSE used (Total process time):

      real time           0.01 seconds

      cpu time            0.00 seconds


RESULT:HERE IT'S SHOWING ONLY POPULATION COUNT..

                            The SAS System
Obs _NAME_ COL1 COL2 COL3 COL4
1 POPULATION 2 1 5 3


EG2:IN THIS SYNTAX ADDING ONE MORE OPTION PREFIX..

PROC TRANSPOSE DATA=NARROW OUT=NARROW_TRAN01 PREFIX=PET_COUNT;

RUN;


LOG:

NOTE: There were 4 observations read from the data set WORK.NARROW.

NOTE: The data set WORK.NARROW_TRAN01 has 1 observations and 5 variables.

NOTE: PROCEDURE TRANSPOSE used (Total process time):

      real time           0.01 seconds

      cpu time            0.00 seconds


RESULT:HERE IT'S SHOWING IN THE PLACE OF PREFIX SHOWING NAME = PET_NAME..

                                                           The SAS System

Obs _NAME_ PET_COUNT1 PET_COUNT2 PET_COUNT3 PET_COUNT4
1 POPULATION 2 1 5 3


EG3:HERE WE ARE ADDING NAME OPTION TO GIVE NAME FOR THE VARIABLE..

PROC TRANSPOSE DATA=NARROW OUT=NARROW_TRAN02 

                          NAME=COL_TRANSPOSED PREFIX=PET_COUNT;

RUN;


LOG:

NOTE: There were 4 observations read from the data set WORK.NARROW.

NOTE: The data set WORK.NARROW_TRAN02 has 1 observations and 5 variables.

NOTE: PROCEDURE TRANSPOSE used (Total process time):

      real time           0.01 seconds

      cpu time            0.01 seconds


RESULT:HERE WE GIVEN _NAME_  = COL_TRANSPOSED ..

                                                                 The SAS System

Obs COL_TRANSPOSED PET_COUNT1 PET_COUNT2 PET_COUNT3 PET_COUNT4
1 POPULATION 2 1 5 3



ANSWER THIS QUESTIONS IN COMMENT:

1.WHAT DID THE PREFIX OPTION DO?

2. WHAT DID THE NAME OPTION DO?



TRY THIS AND COMMENT ...


-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE: https://t.me/SasAll4You







Tuesday, 24 December 2024

62.ADDING NEW DATA INTO AVAILABLE DATA USING MERGE

         ADDING NEW DATA INTO AVAILABLE DATA USING MERGE 


DATA  WHICH WANTS TO MERGE WITH ALREADY CREATED DATE..IT CONSISTS OF 3 STEPS AND I HAVE ALSO SORTED THE DATA..

1.DATA CLASS1;

 SET SASHELP.CLASS4;

RUN;


LOG:

NOTE: There were 19 observations read from the data set SASHELP.CLASS4.

NOTE: The data set WORK.CLASS1 has 19 observations and 8 variables.

NOTE: DATA statement used (Total process time):

      real time           0.50 seconds

      cpu time            0.04 seconds


2.DATA WORK.CLASS2;

 INPUT  Name$ Sex$ Age Height Weight DOB:DATE9. CLASS GRADE$;

 DATALINES;

 Nancy F 19 69 102 12MAR2002 . A

 Firoz M 20 76 125 15JUN2001 . A

 ;

RUN;


LOG:

NOTE: The data set WORK.CLASS2 has 2 observations and 8 variables.

NOTE: DATA statement used (Total process time):

      real time           0.07 seconds

      cpu time            0.00 seconds


3.DATA SASHELP.CLASS3;

 MERGE CLASS1

       CLASS2;

RUN;

PROC PRINT;RUN;


LOG:

NOTE: There were 19 observations read from the data set WORK.CLASS1.

NOTE: There were 2 observations read from the data set WORK.CLASS2.

NOTE: The data set SASHELP.CLASS3 has 19 observations and 8 variables.

NOTE: DATA statement used (Total process time):

      real time           0.09 seconds

      cpu time            0.01 seconds


RESULT:
                                                              The SAS System

Obs Name Sex Age Height Weight DOB CLASS GRADE
1 Nancy F 19 69 102 12MAR2002 . A
2 Firoz M 20 76 125 15JUN2001 . A
3 Barbara F 13 65.3 98 14DEC2010 8 C
4 Carol F 14 62.8 102.5 12NOV2009 9 B
5 Henry M 14 63.5 102.5 14NOV2009 9 C
6 James M 12 57.3 83 15MAR2011 7 A
7 Jane F 12 59.8 84.5 17APR2011 7 A
8 Janet F 15 62.5 112.5 14NOV2009 10 A
9 Jeffrey M 13 62.5 84 15APR2010 8 B
10 John M 12 59 99.5 15JUN2011 7 A
11 Joyce F 11 51.3 50.5 17DEC2012 6 C
12 Judy F 14 64.3 90 18DEC2010 9 A
13 Louise F 12 56.3 77 14NOV2011 7 A
14 Mary F 15 66.5 112 15DEC2009 10 A
15 Philip M 16 72 150 16APR2008 11 B
16 Robert M 12 64.8 128 14DEC2011 7 C
17 Ronald M 15 67 133 12MAR2009 10 A
18 Thomas M 11 57.5 85 14MAY2012 6 A
19 William M 15 66.5 112 15FEB2009 10 C

PROC SORT DATA=SASHELP.CLASS3;

 BY NAME;

RUN;

PROC PRINT;RUN;


LOG:

NOTE: There were 19 observations read from the data set SASHELP.CLASS3.

NOTE: The data set SASHELP.CLASS3 has 19 observations and 8 variables.

NOTE: PROCEDURE SORT used (Total process time):

      real time           0.23 seconds

      cpu time            0.03 seconds


RESULT:SORTED DATA

                                                              The SAS System


Obs Name Sex Age Height Weight DOB CLASS GRADE
1 Barbara F 13 65.3 98 14DEC2010 8 C
2 Carol F 14 62.8 102.5 12NOV2009 9 B
3 Firoz M 20 76 125 15JUN2001 . A
4 Henry M 14 63.5 102.5 14NOV2009 9 C
5 James M 12 57.3 83 15MAR2011 7 A
6 Jane F 12 59.8 84.5 17APR2011 7 A
7 Janet F 15 62.5 112.5 14NOV2009 10 A
8 Jeffrey M 13 62.5 84 15APR2010 8 B
9 John M 12 59 99.5 15JUN2011 7 A
10 Joyce F 11 51.3 50.5 17DEC2012 6 C
11 Judy F 14 64.3 90 18DEC2010 9 A
12 Louise F 12 56.3 77 14NOV2011 7 A
13 Mary F 15 66.5 112 15DEC2009 10 A
14 Nancy F 19 69 102 12MAR2002 . A
15 Philip M 16 72 150 16APR2008 11 B
16 Robert M 12 64.8 128 14DEC2011 7 C
17 Ronald M 15 67 133 12MAR2009 10 A
18 Thomas M 11 57.5 85 14MAY2012 6 A
19 William M 15 66.5 112 15FEB2009 10 C


TRY THIS AND COMMENT ...


-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE: https://t.me/SasAll4You


Friday, 20 December 2024

61.PROC TABULATE | OUT OPTION

                                        PROC TABULATE | OUT OPTION 


PROC TABULATE OUT OPTION:

PROC TABULATE OUTPUT OPTION PRODUCES DATASETS USING FOLLOWING METHOD:

PROC TABULATE DATA=SAS DATASET OUT=SAS DATASET;


THE OUTPUT VARIABLES ARE:

* BY  VARIABLES

* CLASS VARIABLES

* THE AUTOMATIC VARIABLES _TYPE_ , _PAGE_  AND _TABLE_

* CALCULATED STATISTICS


EG:

PROC TABULATE DATA=PROG1.SALES OUT=SALES;

 CLASS JOB_TITLE GENDER COUNTRY;

 WHERE JOB_TITLE CONTAINS "Rep";

 TABLE COUNTRY;

 TABLE GENDER COUNTRY;

 TABLE JOB_TITLE,GENDER,COUNTRY;

RUN;

PROC PRINT;RUN;


LOG:

NOTE: There were 159 observations read from the data set PROG1.SALES.

      WHERE JOB_TITLE contains 'Rep';

NOTE: The data set WORK.SALES has 31 observations and 7 variables.

NOTE: PROCEDURE TABULATE used (Total process time):

      real time           3.04 seconds

      cpu time            0.40 seconds

NOTE: There were 31 observations read from the data set WORK.SALES.

NOTE: PROCEDURE PRINT used (Total process time):

      real time           0.21 seconds

      cpu time            0.03 seconds


RESULT:

                                                                      The SAS System

Obs Job_Title Gender Country _TYPE_ _PAGE_ _TABLE_ N
1     AU 001 1 1 57
2     IN 001 1 1 4
3     UK 001 1 1 5
4     US 001 1 1 93
5   F   010 1 2 67
6   M   010 1 2 92
7     AU 001 1 2 57
8     IN 001 1 2 4
9     UK 001 1 2 5
10     US 001 1 2 93
11 Sales Rep. I F AU 111 1 3 8
12 Sales Rep. I F UK 111 1 3 1
13 Sales Rep. I F US 111 1 3 12
14 Sales Rep. I M AU 111 1 3 13
15 Sales Rep. I M US 111 1 3 29
16 Sales Rep. II F AU 111 2 3 7
17 Sales Rep. II F IN 111 2 3 3
18 Sales Rep. II F UK 111 2 3 3
19 Sales Rep. II F US 111 2 3 11
20 Sales Rep. II M AU 111 2 3 8
21 Sales Rep. II M US 111 2 3 14
22 Sales Rep. III F AU 111 3 3 6
23 Sales Rep. III F IN 111 3 3 1
24 Sales Rep. III F UK 111 3 3 1
25 Sales Rep. III F US 111 3 3 7
26 Sales Rep. III M AU 111 3 3 10
27 Sales Rep. III M US 111 3 3 9
28 Sales Rep. IV F AU 111 4 3 2
29 Sales Rep. IV F US 111 4 3 5
30 Sales Rep. IV M AU 111 4 3 3
31 Sales Rep. IV M US 111 4 3 6


TRY THIS OPTION AND COMMENT ...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE: https://t.me/SasAll4You




Wednesday, 18 December 2024

60.PROC TABULATE | MIN MAX STATISTICS

               PROC TABULATE | MIN MAX STATISTICS


PROC FORMAT:

PROC FORMAT;

 VALUE $CTRYFMT  "AU"="AUSTRALIA"

                 "US"="UNITES STATES"

"IN"="INDIA"

"UK"="UNITED KINGDOM";

RUN;

LOG:

NOTE: Format $CTRYFMT has been output.


NOTE: PROCEDURE FORMAT used (Total process time):
      real time           0.09 seconds
      cpu time            0.03 seconds

RESULT:
    

PROC TABULATE:MINIMUM AND MAXIMUM STATISTICS WITH ODS..

HERE ODS MEANS :OUTPUT DELIVERY  SYSTEM...
WE CAN WRITE ANY DOCUMENTS LIKE PDF,HTML,RTF ETC..


ODS HTML FILE="SALES000.HTML"

PROC TABULATE DATA=PROG1.SALES ;

   CLASS GENDER COUNTRY;

   VAR SALARY;

   TABLE GENDER ALL,COUNTRY*SALARY*(MIN MAX);

   WHERE JOB_TITLE CONTAINS "Rep";

   LABEL SALARY="Annual Salary";

   FORMAT COUNTRY $CTRYFMT.;

   TITLE "SALES REP TABULAR REPORT";

RUN;

ODS _ALL_ CLOSE;


LOG:

NOTE: There were 159 observations read from the data set PROG1.SALES.
      WHERE JOB_TITLE contains 'Rep';
NOTE: PROCEDURE TABULATE used (Total process time):
      real time           0.10 seconds
      cpu time            0.04 seconds


RESULT:

                                                               SALES REP TABULAR REPORT

 Country
AUSTRALIAINDIAUNITED KINGDOMUNITES STATES
Annual SalaryAnnual SalaryAnnual SalaryAnnual Salary
MinMaxMinMaxMinMaxMinMax
Gender25185.0030890.0027475.0028745.0026205.0029525.0025390.0032985.00
F
M25745.0036605.00....22710.0035990.00
All25185.0036605.0027475.0028745.0026205.0029525.0022710.0035990.00



TRY THIS OPTION AND COMMENT ...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE: https://t.me/SasAll4You



Tuesday, 17 December 2024

59.PROC MEANS | CHARTYPE OPTION

                             PROC MEANS | CHARTYPE OPTION 


PROC MEANS DATA=PROG1.SALES  ;

 VAR SALARY;

 CLASS GENDER COUNTRY;

 OUTPUT OUT=WORK.MEANS1

        MIN=MINSALARY MAX=MAXSALARY

        SUM=SUMSALARY MEAN=AVGSALARY;

RUN;

PROC PRINT;RUN;


LOG:


NOTE: Writing HTML Body file: sashtml.htm

NOTE: There were 165 observations read from the data set PROG1.SALES.

NOTE: The data set WORK.MEANS1 has 13 observations and 8 variables.

NOTE: PROCEDURE MEANS used (Total process time):

      real time           3.88 seconds

      cpu time            0.39 seconds


RESULT:WITHOUT  CHARTYPE OPTIONS OBSERVE THE _TYPE_..

                                                                         The SAS System

ObsGenderCountry_TYPE__FREQ_MINSALARYMAXSALARYSUMSALARYAVGSALARY
1  016522710243190514142031160.12
2 AU15925185108255179078030352.20
3 IN14274752874511223528058.75
4 UK15262052952513721027442.00
5 US19722710243190310119531971.08
6F 2682518583505195586528762.72
7M 29722710243190318555532840.77
8FAU323251853089063873027770.87
9FIN34274752874511223528058.75
10FUK35262052952513721027442.00
11FUS3362539083505106769029658.06
12MAU33625745108255115205032001.39
13MUS36122710243190203350533336.15


CHARTYPE:SPECIFIES THAT THE  _TYPE_ VARIABLE IN THE OUTPUT DATASET IS A CHARACTER REPRESENTATION OF THE BINARY VALUE OF _TYPE_..

PROC MEANS DATA=PROG1.SALES CHARTYPE ;

 VAR SALARY;

 CLASS GENDER COUNTRY;

 OUTPUT OUT=WORK.MEANS2

        MIN=MINSALARY MAX=MAXSALARY 

        SUM=SUMSALARY MEAN=AVGSALARY;

RUN;

PROC PRINT;RUN; 


LOG:


NOTE: Writing HTML Body file: sashtml.htm
NOTE: There were 165 observations read from the data set PROG1.SALES.
NOTE: The data set WORK.MEANS1 has 13 observations and 8 variables.
NOTE: PROCEDURE MEANS used (Total process time):
      real time           2.57 seconds
      cpu time            0.34 seconds

NOTE: There were 13 observations read from the data set WORK.MEANS1.
NOTE: PROCEDURE PRINT used (Total process time):
      real time           0.15 seconds
      cpu time            0.01 seconds


RESULT:WITH CHARTYPE OPTION OBSERVE THE _TYPE_ VARIABLE..

                                                                                The SAS System

Obs Gender Country _TYPE_ _FREQ_ MINSALARY MAXSALARY SUMSALARY AVGSALARY
1     00 165 22710 243190 5141420 31160.12
2   AU 01 59 25185 108255 1790780 30352.20
3   IN 01 4 27475 28745 112235 28058.75
4   UK 01 5 26205 29525 137210 27442.00
5   US 01 97 22710 243190 3101195 31971.08
6 F   10 68 25185 83505 1955865 28762.72
7 M   10 97 22710 243190 3185555 32840.77
8 F AU 11 23 25185 30890 638730 27770.87
9 F IN 11 4 27475 28745 112235 28058.75
10 F UK 11 5 26205 29525 137210 27442.00
11 F US 11 36 25390 83505 1067690 29658.06
12 M AU 11 36 25745 108255 1152050 32001.39
13 M US 11 61 22710 243190 2033505 33336.15


TRY THIS OPTION AND COMMENT ...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE: https://t.me/SasAll4You


Monday, 16 December 2024

58.PROC MEANS | DESCENDTYPES OPTION

                             PROC MEANS | DESCENDTYPES OPTION


PROC MEANS DATA=PROG1.SALES  ;

 VAR SALARY;

 CLASS GENDER COUNTRY;

 OUTPUT OUT=WORK.MEANS1

        MIN=MINSALARY MAX=MAXSALARY

        SUM=SUMSALARY MEAN=AVGSALARY;

RUN;

PROC PRINT;RUN;


LOG:


NOTE: Writing HTML Body file: sashtml.htm

NOTE: There were 165 observations read from the data set PROG1.SALES.

NOTE: The data set WORK.MEANS1 has 13 observations and 8 variables.

NOTE: PROCEDURE MEANS used (Total process time):

      real time           3.88 seconds

      cpu time            0.39 seconds


RESULT:WITHOUT  DESCENDTYPES OPTION OBSERVE THE _TYPE_..

                                                                         The SAS System

ObsGenderCountry_TYPE__FREQ_MINSALARYMAXSALARYSUMSALARYAVGSALARY
1  016522710243190514142031160.12
2 AU15925185108255179078030352.20
3 IN14274752874511223528058.75
4 UK15262052952513721027442.00
5 US19722710243190310119531971.08
6F 2682518583505195586528762.72
7M 29722710243190318555532840.77
8FAU323251853089063873027770.87
9FIN34274752874511223528058.75
10FUK35262052952513721027442.00
11FUS3362539083505106769029658.06
12MAU33625745108255115205032001.39
13MUS36122710243190203350533336.15
 

DESCENDTYPES:ORDERS THE OUTPUT DATASET BY DESCENDING _TYPE_  VALUE..

PROC MEANS DATA=PROG1.SALES DESCENDTYPES ;

 VAR SALARY;

 CLASS GENDER COUNTRY;

 OUTPUT OUT=WORK.MEANS1

        MIN=MINSALARY MAX=MAXSALARY

        SUM=SUMSALARY MEAN=AVGSALARY;

RUN;

PROC PRINT;RUN;

LOG:

NOTE: Writing HTML Body file: sashtml.htm
NOTE: There were 165 observations read from the data set PROG1.SALES.
NOTE: The data set WORK.MEANS1 has 13 observations and 8 variables.
NOTE: PROCEDURE MEANS used (Total process time):
      real time           2.79 seconds
      cpu time            0.28 seconds
NOTE: There were 13 observations read from the data set WORK.MEANS1.
NOTE: PROCEDURE PRINT used (Total process time):
      real time           0.26 seconds
      cpu time            0.01 seconds


RESULT:
                                                                                   The SAS System

Obs Gender Country _TYPE_ _FREQ_ MINSALARY MAXSALARY SUMSALARY AVGSALARY
1 F AU 3 23 25185 30890 638730 27770.87
2 F IN 3 4 27475 28745 112235 28058.75
3 F UK 3 5 26205 29525 137210 27442.00
4 F US 3 36 25390 83505 1067690 29658.06
5 M AU 3 36 25745 108255 1152050 32001.39
6 M US 3 61 22710 243190 2033505 33336.15
7 F   2 68 25185 83505 1955865 28762.72
8 M   2 97 22710 243190 3185555 32840.77
9   AU 1 59 25185 108255 1790780 30352.20
10   IN 1 4 27475 28745 112235 28058.75
11   UK 1 5 26205 29525 137210 27442.00
12   US 1 97 22710 243190 3101195 31971.08
13     0 165 22710 243190 5141420 31160.12


TRY THIS OPTION AND COMMENT ...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE: https://t.me/SasAll4You