Thursday, 27 February 2025

114.CLINICAL TRIALS INTERVIEW QUESTIONS IN SAS - 1

         CLINICAL  TRIALS  INTERVIEW QUESTIONS IN SAS - 1 


1.Describe the phases of clinical trials?

 Ans:- These are the following four phases of the clinical trials: 

 Phase 1: Test a new drug or treatment to a small group of people (20-80) to evaluate its safety. 

 Phase 2: The experimental drug or treatment is given to a large group of people (100-300) to see that the drug is effective or not for that treatment.

 Phase 3: The experimental drug or treatment is given to a large group of people (1000-3000) to see its effectiveness, monitor side effects and compare it to commonly used treatments.

 Phase 4: The 4 phase study includes the post marketing studies including the drug’s risk, benefits etc.


 2. Describe the validation procedure? How would you perform the validation for TLG as well as analysis data set? 

 Ans:- Validation procedure is used to check the output of the SAS program generated by the source programmer. In this process validator write the program and generate the output. If this output is same as the output generated by the SAS programmer’s output then the program is considered to be valid. We can perform this validation for TLG by checking the output manually and for analysis data set it can be done using PROC COMPARE.


 3. How would you perform the validation for the listing, which has 400 pages? 

 Ans:- It is not possible to perform the validation for the listing having 400 pages manually. To do this, we convert the listing in data sets by using PROC REPORT and then after that we can compare it by using PROC COMPARE. 


 4. Can you use PROC COMPARE to validate listings? Why?

 Ans:- Yes, we can use PROC COMPARE to validate the listing because if there are many entries (pages) in the listings then it is not possible to check them manually. So in this condition we use PROC COMPARE to validate the listings. 


 5. How would you generate tables, listings and graphs? 

 Ans:- We can generate the listings by using the PROC REPORT. Similarly we can create the tables by using PROC FREQ, PROC MEANS, and PROC TRANSPOSE and PROC REPORT. We would generate graph, using proc Gplot etc.


COMMENT YOUR EXPERIENCED INTERVIEW QUESTIONS...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You

113.SET | ASSIGNMENT | UPCASE | LOWCASE | DROP | LENGTH | IF THEN OUTPUT | LIKE

SET | ASSIGNMENT | UPCASE | LOWCASE | DROP | LENGTH | IF THEN OUTPUT | LIKE IN SAS


DATA NEW;

 SET PROG1.SALES;

 NAME=UPCASE(FIRST_NAME||""||LAST_NAME);

 DROP FIRST_NAME LAST_NAME;

RUN;

PROC PRINT;

 VAR Employee_ID NAME Gender Salary; 

RUN;


OUTPUT:

Obs Employee_ID NAME Gender Salary
1 120167 KIMIKO TILLEY F 25185
2 120168 SELINA BARCOE F 25275
3 121101 BURNETTA BUCKNER F 25390
4 121092 GYNELL PRITT F 25680
5 120138 SHANI DUCKETT F 25795
6 121047 KAREN GRZEBIEN F 25820
7 . LIBBY LEVI F 25930
8 121036 TERESA MESLEY F 25965
9 121051 GLORINA MYERS F 26025
10 . PATRICIA CAPRISTO-ABRAMCZYK F 26080

NOTE: DUE TO OVER SPACE ONLY 10 OBSERVATIONS ARE DISPLAYED HERE..

DATA NEW01;

 LENGTH GENDER $8;

 SET NEW;

 IF EMPLOYEE_ID="" THEN OUTPUT;

RUN;

PROC PRINT;

 VAR Employee_ID NAME Gender Salary ;

RUN;


OUTPUT:

Obs Employee_ID NAME GENDER Salary
1 . LIBBY LEVI F 25930
2 . PATRICIA CAPRISTO-ABRAMCZYK F 26080
3 . JUDY CHANTHARASY F 26390
4 . JULIANNA PHAIYAKOUNH F 26520
5 . WILLETA CHERNEGA F 26830
6 . PERRIOR BATAINEH F 26930


DATA NEW02;

 SET NEW01;

 WHERE NAME LIKE 'J%';

RUN;

PROC PRINT;RUN;


OUTPUT:
Obs GENDER Employee_ID Salary Job_Title Country Birth_Date Hire_Date NAME
1 F . 26390 Sales Rep. I AU 5438 12054 JUDY CHANTHARASY
2 F . 26520 Sales Rep. II AU -5519 5114 JULIANNA PHAIYAKOUNH


COMMENT AND SHARE YOUR SYNTAX...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You



Wednesday, 26 February 2025

112.ASSIGNMENT STATEMENT | DATA STEP | SET STATEMENT

              ASSIGNMENT STATEMENT | DATA STEP | SET STATEMENT


OBSERVE THE ASSIGNMENT STATEMENT WHICH IS PLACED WITH ALREADY AVAILABLE VARIABLE WITH SAME NAME AND DIFFERNT NAME..

DATA NEW;

 SET SASHELP.CLASS;

 GENDER=SEX;

RUN;

PROC PRINT;RUN;


OUTPUT:

Obs Name Sex Age Height Weight GENDER
1   M 12 57.3 83.0 M
2   M 12 59.0 99.5 M
3   F 13 56.5 84.0 F
4   F 15 66.5 112.0 F
5 Alfred M 14 69.0 112.5 M
6 Alice F 13 56.5 84.0 F
7 Barbara F 13 65.3 98.0 F
8 Carol   14 62.8 102.5  
9 Carol F 14 62.8 102.5 F
10 Henry M 14 63.5 102.5 M
11 James M 12 57.3 83.0 M
12 Jane F 12 59.8 84.5 F
13 Janet F 15 62.5 112.5 F
14 Jeffrey M 13 62.5 84.0 M
15 John M 12 59.0 99.5 M
16 Joyce F 11 51.3 50.5 F
17 Judy   14 64.3 90.0  
18 Judy F 14 64.3 90.0 F
19 Louise F 12 56.3 77.0 F
20 Mary F 15 66.5 112.0 F
21 Philip M 16 72.0 150.0 M
22 Robert M 12 64.8 128.0 M
23 Ronald M 15 67.0 133.0 M
24 Thomas M 11 57.5 85.0 M
25 William M 15 66.5 112.0 M



DATA NEW1;

 SET SASHELP.CLASS;

 AGE=Age;

RUN;

PROC PRINT;RUN;


OUTPUT:

ObsNameSexAgeHeightWeight
1 M1257.383.0
2 M1259.099.5
3 F1356.584.0
4 F1566.5112.0
5AlfredM1469.0112.5
6AliceF1356.584.0
7BarbaraF1365.398.0
8Carol 1462.8102.5
9CarolF1462.8102.5
10HenryM1463.5102.5
11JamesM1257.383.0
12JaneF1259.884.5
13JanetF1562.5112.5
14JeffreyM1362.584.0
15JohnM1259.099.5
16JoyceF1151.350.5
17Judy 1464.390.0
18JudyF1464.390.0
19LouiseF1256.377.0
20MaryF1566.5112.0
21PhilipM1672.0150.0
22RobertM1264.8128.0
23RonaldM1567.0133.0
24ThomasM1157.585.0
25WilliamM1566.5112.0


COMMENT AND SHARE YOUR SYNTAX...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You

Tuesday, 25 February 2025

111.SAS INTERVIEW QUESTIONS - 3

                 SAS INTERVIEW QUESTIONS - 3


11. Explain how to use PROC SQL for data manipulation and querying?

 In Proc SQL we use 

 Select:Specifies the columns which you want. 

 From:Specifies the table from which you want to retrieve. 

 Where:Filter the data based on conditions.

 Order By:It sorts the data in ascending or descending manner.

 Group By:Group data based on one or columns. 

 Having:Filters Groups based on conditions. 

 Eg: Proc sql; 

 Select column1,column2 

 From dataset 

 Where condition 

 Order by column1

 Exit;


12.How Would You Create A Frequency Table And Calculate Percentages Using SAS?

 By using Proc Freq Statement and Colpctn,Rowpctn options are used to calculate percentages. 


13. How To Use PROC FORMAT To Create Custom Formats?

In Proc Format by using Value Statement we can create custom formats.


14. What are SAS macros and why are they used? 

SAS Macros are used to automate the repetitive task. It can make your work faster by automating the task that requires writing same lines of code every day.


15.Explain the difference between macro variables and data step variables? 

 Macro Variables are Global or Local variables.These are textual strings.It executes before the Data Step.It is used for Code generation,Automation. 

 Data Step Variables are Local to a dataset.These are Numeric or Character.It executes during the Data Step.It is used for Data Manipulation,Calculations. 


COMMENT YOUR EXPERIENCED INTERVIEW QUESTIONS...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You

Monday, 24 February 2025

110.PROC CONTENTS | SET | IF THEN OUTPUT STATEMENTS

       PROC CONTENTS | SET | IF THEN OUTPUT STATEMENTS


PROC CONTENTS DATA=SASHELP.CLASS4;

RUN;


OUTPUT:

Alphabetic List of Variables and Attributes
# Variable Type Len Format Informat Label
3 Age Num 8 BEST18.   Age
7 CLASS Num 8 BEST15.   CLASS
6 DOB Num 8 DATE9.   DOB
8 GRADE Char 11 $11. $11. GRADE
4 Height Num 8 BEST18.   Height
1 Name Char 14 $14. $14. Name
2 Sex Char 11 $11. $11. Sex
5 Weight Num 8 BEST18.   Weight


DATA NEWCLASS;

 SET SASHELP.CLASS4;

 IF AGE > 13 THEN OUTPUT;

RUN;

PROC PRINT;RUN;


OUTPUT:

Obs Name Sex Age Height Weight DOB CLASS GRADE
1 Alfred M 14 69 112.5 12OCT2009 9 A
2 Carol F 14 62.8 102.5 12NOV2009 9 B
3 Henry M 14 63.5 102.5 14NOV2009 9 C
4 Janet F 15 62.5 112.5 14NOV2009 10 A
5 Judy F 14 64.3 90 18DEC2010 9 A
6 Mary F 15 66.5 112 15DEC2009 10 A
7 Philip M 16 72 150 16APR2008 11 B
8 Ronald M 15 67 133 12MAR2009 10 A
9 William M 15 66.5 112 15FEB2009 10 C


DATA NEWCLASS1;

 SET SASHELP.CLASS4;

 IF GRADE IN ('B','C') THEN OUTPUT;

RUN;

PROC PRINT;RUN;

 

OUTPUT:

Obs Name Sex Age Height Weight DOB CLASS GRADE
1 Alice F 13 56.5 84 12MAR2010 8 B
2 Barbara F 13 65.3 98 14DEC2010 8 C
3 Carol F 14 62.8 102.5 12NOV2009 9 B
4 Henry M 14 63.5 102.5 14NOV2009 9 C
5 Jeffrey M 13 62.5 84 15APR2010 8 B
6 Joyce F 11 51.3 50.5 17DEC2012 6 C
7 Philip M 16 72 150 16APR2008 11 B
8 Robert M 12 64.8 128 14DEC2011 7 C
9 William M 15 66.5 112 15FEB2009 10 C


TRY AND COMMENT YOUR CODE...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You


Thursday, 20 February 2025

109.SAS INTERVIEW QUESTIONS - 2

                     SAS INTERVIEW QUESTIONS - 2


6. Describe different ways to combine datasets in sas (e.g., merge, set, append). When would you use each?

 Already we know that different ways to combine datasets are 

 Merge : they combine datasets in horizontally using by statement. 

 Set: the dataset concatenates the other dataset in horizontally. 

 Append: the second dataset observations added to original dataset.

When you want to add observations from one dataset to other dataset then use append statement. 

 When you want to combine datasets without matching conditions then use set statement. 

 When you want to combine datasets with matching conditions then use merge statement.


7. How do you handle missing values in sas? Discuss different missing value representations and functions like nmiss, cmiss, and missing. 

 Nmiss: returns the number of missing values in numeric variables. 

 Cmiss: returns the character of missing values in character variables. 

 Missing: returns 1 if the (both numeric and character) values are missing and otherwise 0. 


8. How do you create new variables in sas? Explain the difference between assignment statements and the retain statement.

 By using assignment statement, conditional statement, sum statement we can create new variables.

 In conditional statements we use : if then, if then else, if then else if, if then do, if then delete, if then output. 

 Assignment statement:used to assign values to variables within the datastep.values are typically assigned based on calculations,comparisions or input from the data. 

 Retain statement:used to retain the value of variable from one iteration of the datastep to the next.allows you to carry information across observations within a dataset. 


9. Explain the difference between where clause and subseting if statement in sas?

 Where statement: it is used to subset the observations. it cannot create any new variables. it is processed before the data is read into the pdv then sas filters data based on where condition only reads selected observations into memory. 

 If statement: it is used to subset the observation conditionally. It can also create new variables accordingly. if statement processed after an observation read into the pdv.sas reads all observations into memory and discards those that do not meet the condition.  


10.How would you transpose a dataset in SAS? 

 By using the Proc Transpose statement we can transpose the dataset. 


COMMENT YOUR EXPERIENCED INTERVIEW QUESTIONS...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You

Wednesday, 19 February 2025

108.SAS INTERVIEW QUESTIONS - 1

                      SAS INTERVIEW QUESTIONS - 1


1. What are some commonly used sas procedures for data analysis and reporting? Give examples of when you would use each. 

 Sas procedures for data analysis and reporting: proc means, proc freq, proc summary, proc univariate, proc anova, proc reg, proc print, proc report etc.. 

 I have used for creating statistical and summarizing information and for customized and professional report in sas..


2. How do you read data from different file formats (e.g., csv, txt, excel) into sas?

 By using infile statement and import statement we can read data from different file formats...


3. How do you export sas datasets to different file formats? 

 By using export statement we can export data to different file formats...


4. How do you debug sas code? What are some common debugging techniques?

 Debugging techniques are mprint, mlogic,symbolgen,put .. 


5.How do you handle errors in sas? 

 By Using Syntax Checks Options , Error Handling Statements, System Options Mprint NOTES, Return Codes Like _Error_ _N_ , Sas Debugging Tools Etc… 


COMMENT YOUR EXPERIENCED INTERVIEW QUESTIONS...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You

Tuesday, 18 February 2025

107.SET | WHERE | KEEP | ASSIGNMENT STATEMENT | LIKE

      SET | WHERE | KEEP | ASSIGNMENT STATEMENT | LIKE 


DATA WORK.CUSTOMER;

         SET PROG1.CUSTOMER;

WHERE Customer_FirstName like 'M%';

KEEP CUSTOMER_ID Customer_FirstName Customer_LastName GENDER COUNTRY;

RUN;

PROC PRINT;

RUN;


OUTPUT:

Obs Customer_ID Country Gender Customer_FirstName Customer_LastName
1 13 DE M Markus Sepke
2 20 US M Michael Dineley
3 75 US M Mikel Spetz


DATA WORK.CUSTOMER02;

        SET PROG1.CUSTOMER;

NAME=Customer_FirstName||','||Customer_LastName;

KEEP CUSTOMER_ID Name Name GENDER COUNTRY;

RUN;

PROC PRINT;

RUN;


OUTPUT:

Obs Customer_ID Country Gender NAME
1 4 US M James ,Kvarniq
2 5 US F Sandrina ,Stephano
3 9 DE F Cornelia ,Krahl
4 10 US F Karen ,Ballinger
5 11 DE F Elke ,Wallstab
6 12 US M David ,Black
7 13 DE M Markus ,Sepke
8 16 DE M Ulrich ,Heyde
9 17 US M Jimmie ,Evans
10 18 US M Tonie ,Asmussen

NOTE: DUE TO LENGTH ISSUE I HAVE KEPT ONLY 10 OBSERVATIONS..


DATA CUSTOMER03;

        SET CUSTOMER02;

WHERE NAME LIKE '%,M%';

KEEP CUSTOMER_ID Name GENDER COUNTRY;

RUN;

PROC PRINT;

RUN;


OUTPUT:

Obs Customer_ID Country Gender NAME
1 27 US F Cynthia ,Mccluney
2 31 US F Cynthia ,Martinez
3 50 DE M Gert-Gunter ,Mendler
4 61 DE M Carsten ,Maestrini
5 54655 CA F Lauren ,Marx
6 70046 CA M Tommy ,Mcdonald


DATA CUSTOMER04;

        SET CUSTOMER;

WHERE NAME LIKE 'M%,D%';

KEEP CUSTOMER_ID Name GENDER COUNTRY;

RUN;

PROC PRINT;

RUN;


OUTPUT:

Obs Customer_ID Country Gender NAME
1 20 US M Michael ,Dineley


TRY AND COMMENT YOUR CODE...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You

Monday, 17 February 2025

106.SET | PROC SORT | FIRST. | LAST. STATEMENTS

          SET | PROC SORT | FIRST. | LAST. STATEMENTS 


Data Work.Emps;

  Set Prog2.Empsals;

Run;

Proc Print;

Run;


OUTPUT:

Obs EmpID Salary Div
1 E00004 42000 HUMRES
2 E00009 34000 FINACE
3 E00011 27000 FLTOPS
4 E00036 20000 FINACE
5 E00037 19000 FINACE
6 E00048 19000 FLTOPS
7 E00077 27000 APTOPS
8 E00097 20000 APTOPS
9 E00107 31000 FINACE
10 E00123 20000 APTOPS
11 E00155 27000 APTOPS
12 E00171 44000 SALES
13 E00188 37000 HUMRES
14 E00196 43000 APTOPS
15 E00210 31000 APTOPS
16 E00222 250000 SALES
17 E00236 41000 APTOPS
18 E00239 42000 FLTOPS
19 E00259 32000 APTOPS
20 E00260 39000 APTOPS
21 E00262 36000 FLTOPS
22 E00272 22000 FINACE
23 E00290 37000 FINACE
24 E00302 18000 HUMRES
25 E00333 36000 APTOPS
26 E00367 33000 FLTOPS
27 E00372 36000 HUMRES
28 E00379 25000 APTOPS
29 E00388 25000 APTOPS
30 E00402 28000 FLTOPS
31 E00407 61000 FLTOPS
32 E00421 31000 HUMRES
33 E00424 17000 HUMRES
34 E00427 27000 APTOPS
35 E00440 17000 APTOPS
36 E00454 45000 FLTOPS
37 E00463 39000 SALES
38 E00465 27000 FLTOPS
39 E00470 40000 SALES


Proc Sort Data=Prog2.Empsals Out=Salsort;

  By Div;

Run;

Proc Print;

Run;


OUTPUT:

Obs EmpID Salary Div
1 E00077 27000 APTOPS
2 E00097 20000 APTOPS
3 E00123 20000 APTOPS
4 E00155 27000 APTOPS
5 E00196 43000 APTOPS
6 E00210 31000 APTOPS
7 E00236 41000 APTOPS
8 E00259 32000 APTOPS
9 E00260 39000 APTOPS
10 E00333 36000 APTOPS
11 E00379 25000 APTOPS
12 E00388 25000 APTOPS
13 E00427 27000 APTOPS
14 E00440 17000 APTOPS
15 E00009 34000 FINACE
16 E00036 20000 FINACE
17 E00037 19000 FINACE
18 E00107 31000 FINACE
19 E00272 22000 FINACE
20 E00290 37000 FINACE
21 E00011 27000 FLTOPS
22 E00048 19000 FLTOPS
23 E00239 42000 FLTOPS
24 E00262 36000 FLTOPS
25 E00367 33000 FLTOPS
26 E00402 28000 FLTOPS
27 E00407 61000 FLTOPS
28 E00454 45000 FLTOPS
29 E00465 27000 FLTOPS
30 E00004 42000 HUMRES
31 E00188 37000 HUMRES
32 E00302 18000 HUMRES
33 E00372 36000 HUMRES
34 E00421 31000 HUMRES
35 E00424 17000 HUMRES
36 E00171 44000 SALES
37 E00222 250000 SALES
38 E00463 39000 SALES
39 E00470 40000 SALES


Data Work.Divsals;

  Set Work.Salsort;

  By Div;

  If First.Div Then Divsal=0;

  Divsal+Salary;

Run;

Proc Print;

Run;


OUTPUT:

Obs EmpID Salary Div Divsal
1 E00077 27000 APTOPS 27000
2 E00097 20000 APTOPS 47000
3 E00123 20000 APTOPS 67000
4 E00155 27000 APTOPS 94000
5 E00196 43000 APTOPS 137000
6 E00210 31000 APTOPS 168000
7 E00236 41000 APTOPS 209000
8 E00259 32000 APTOPS 241000
9 E00260 39000 APTOPS 280000
10 E00333 36000 APTOPS 316000
11 E00379 25000 APTOPS 341000
12 E00388 25000 APTOPS 366000
13 E00427 27000 APTOPS 393000
14 E00440 17000 APTOPS 410000
15 E00009 34000 FINACE 34000
16 E00036 20000 FINACE 54000
17 E00037 19000 FINACE 73000
18 E00107 31000 FINACE 104000
19 E00272 22000 FINACE 126000
20 E00290 37000 FINACE 163000
21 E00011 27000 FLTOPS 27000
22 E00048 19000 FLTOPS 46000
23 E00239 42000 FLTOPS 88000
24 E00262 36000 FLTOPS 124000
25 E00367 33000 FLTOPS 157000
26 E00402 28000 FLTOPS 185000
27 E00407 61000 FLTOPS 246000
28 E00454 45000 FLTOPS 291000
29 E00465 27000 FLTOPS 318000
30 E00004 42000 HUMRES 42000
31 E00188 37000 HUMRES 79000
32 E00302 18000 HUMRES 97000
33 E00372 36000 HUMRES 133000
34 E00421 31000 HUMRES 164000
35 E00424 17000 HUMRES 181000
36 E00171 44000 SALES 44000
37 E00222 250000 SALES 294000
38 E00463 39000 SALES 333000
39 E00470 40000 SALES 373000


Data Work.Divsals01;

  Set Work.Salsort;

  By Div;

  If First.Div Then Divsal=0;

  Divsal+Salary;

  If Last.Div;

Run;

Proc Print Noobs;

Run;


OUTPUT:

EmpID Salary Div Divsal
E00440 17000 APTOPS 410000
E00290 37000 FINACE 163000
E00465 27000 FLTOPS 318000
E00424 17000 HUMRES 181000
E00470 40000 SALES 373000



TRY AND COMMENT YOUR CODE...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You

Sunday, 16 February 2025

105.%LET | SET | WHERE | PUT | CALL SYMPUT | TITLE | FOOTNOTE

%LET | SET | WHERE | PUT | CALL SYMPUT | TITLE | FOOTNOTE


Options Mprint;

%Let Crsno=5;

Data Revenue;

 Set Mauto.All End=Final;

 Where Course_Number=&Crsno;

 Total+1;

 If Paid="Y" Then Paidup+1;

 If Final Then Do;

   Put Total= Paidup=;

   If Paidup<Total Then Do;

    Call Symput("Foot","Some Fees Due");

   End;

   Else Do;

    Call Symput("Foot","All Students Paid");

   End;

 End;

Run;

Proc Print Data=Revenue;

  Var Student_Name Student_company Paid;

  Title "Paid Status For Course &Crsno";

  FootNote "&Foot";

Run;


OUTPUT:

                                              Paid Status For Course 5

Obs Student_Name Student_Company Paid
1 Albritton, Mr. Bryan Special Services Y
2 Babbitt, Mr. Bill National Credit Corp. Y
3 Blayney, Ms. Vivian Southern Gas Co. N
4 Chavez, Ms. Louise US Express Corp. Y
5 Connick, Ms. Pat Central Container Corporation Y
6 Davies, Ms. Leah International Education Association Y
7 Davis, Mr. Bruce Semi;Conductor N
8 Edwards, Mr. Charles Gorman Tire Corp. Y
9 Edwards, Ms. Kathy Allied Wood Corporation Y
10 Griffin, Mr. Jim Housers S&L Y
11 Hickel, Mr. Douglas Towncorp Savings of Illinois N
12 Higgins, Ms. Anne San Juan Gas and Electric Y
13 Kiraly, Mr. Bill Washington International Corp. Y
14 Lehmeyer, Ms. Jean K&P Products N
15 Lochbihler Mr. Mark K&P Products Y
16 Micheaux, Mr. John Emulate Research Y
17 Montgomery, Mr. Jeff Bonstell Electronics N
18 Patterson, Mr. Greg Park Health Management Y
19 Peterson, Ms. Julie Chase Information Technology N
20 Rubin, Mr. Jimmie National Immunology Laboratory N
21 Shipman, Ms. Jan Southern Edison Co. N
22 Short, Ms. Nancy ABC, Inc. Y
23 Stewart, Ms. Lora Sandlot Enterprises N
24 Sukumoljan, Mr. Robert San Juan Gas and Electric Y
25 Wang, Mr. David Log Chemical Y

                                              Some Fees Due


TRY AND COMMENT YOUR CODE...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You

Friday, 14 February 2025

104.%LET | %PUT | %EVAL | MPRINT | MLOGIC | SYMBOLGEN | LOG PRINTTO

%LET | %PUT | %EVAL | MPRINT | MLOGIC | SYMBOLGEN | LOG PRINTTO


%LET A=450;

%LET B=550;

%LET K=%EVAL(&A+&B);

%PUT TOTAL IS &K;


LOG:

5    %PUT TOTAL IS &K;

        TOTAL IS 1000


OPTIONS MPRINT MLOGIC SYMBOLGEN;

%LET A=SHIVA;

%LET B=SHANKAR;

%LET C=RAO;

%PUT &A;

%PUT &B;

%PUT &C;

%LET V=A B;

%PUT &&&V &&&&A;


LOG:

7    OPTIONS MPRINT MLOGIC SYMBOLGEN;

8    %LET A=SHIVA;

9    %LET B=SHANKAR;

10   %LET C=RAO;

11   %PUT &A;

SYMBOLGEN:  Macro variable A resolves to SHIVA

SHIVA

12   %PUT &B;

SYMBOLGEN:  Macro variable B resolves to SHANKAR

SHANKAR

13   %PUT &C;

SYMBOLGEN:  Macro variable C resolves to RAO

RAO

14   %LET V=A B;

15   %PUT &&&V &&&&A;

SYMBOLGEN:  && resolves to &.

SYMBOLGEN:  Macro variable V resolves to A B

SYMBOLGEN:  Macro variable A resolves to SHIVA

SYMBOLGEN:  && resolves to &.

SYMBOLGEN:  && resolves to &.

SYMBOLGEN:  && resolves to &.

SYMBOLGEN:  Macro variable A resolves to SHIVA

SHIVA B SHIVA


TO SAVE YOUR LOG IN YOUR FILES IN DESIRED PATH:

PROC PRINTTO LOG="DESIRED PATH";

RUN;


TRY AND COMMENT YOUR CODE...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You

Thursday, 13 February 2025

103.INPUT | ABSOLUTE | LAG | LOG | LOG10 | MOD | DIF OPTIONS

 INPUT | ABSOLUTE | LAG | LOG | LOG10 | MOD | DIF OPTIONS


DATA NEW;

INPUT NUM;

CARDS;

34.12

56.15

89.34

14.32

-32.15

;

RUN;

PROC PRINT;

RUN;


OUTPUT:

Obs NUM
1 34.12
2 56.15
3 89.34
4 14.32
5 -32.15


/*/*ABSOLUTE GIVE '-' NUMBERS TO '+' NUMBERS*/*/;

/*/*LAG GETS PREVIOUS VARIABLE */*/

/*/*LOG MEANS LOGARITHM AND LOG10 ALSO*/*

/*/*MOD MEANS DIVISION BY OUR NUMBER/*/*/

/*/*DIF MEANS SUBSTRACTION*/*/;


DATA MATH;

SET NEW;

INT=INT(NUM);

ABS=ABS(NUM);

LAG=LAG(NUM);

LOG=LOG(NUM);

LOG1=LOG10(NUM);

MOD=MOD(NUM,5);

DIF=DIF(NUM);

RUN;

PROC PRINT;

RUN;



OUTPUT:
Obs NUM INT ABS LAG LOG LOG1 MOD DIF
1 34.12 34 34.12 . 3.52988 1.53301 4.12 .
2 56.15 56 56.15 34.12 4.02803 1.74935 1.15 22.03
3 89.34 89 89.34 56.15 4.49245 1.95105 4.34 33.19
4 14.32 14 14.32 89.34 2.66166 1.15594 4.32 -75.02
5 -32.15 -32 32.15 14.32 . . -2.15 -46.47


TRY AND COMMENT YOUR CODE...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You

Wednesday, 12 February 2025

102.ABSOLUTE | SQUAREROOT | EXPONENT | NATURAL OPTIONS

 ABSOLUTE | SQUAREROOT | EXPONENT | NATURAL  OPTIONS


DATA NEW;

INPUT Z;

ABSOLUTE=ABS(Z);

SQUARE=SQRT(ABSOLUTE);

EXPONENT=EXP(ABSOLUTE);

NATURAL=LOG(ABSOLUTE);

F=Z**5;

CARDS;

1

-5

6

8

;

RUN;

PROC PRINT;

RUN;


OUTPUT:

Obs Z ABSOLUTE SQUARE EXPONENT NATURAL F
1 1 1 1.00000 2.72 0.00000 1
2 -5 5 2.23607 148.41 1.60944 -3125
3 6 6 2.44949 403.43 1.79176 7776
4 8 8 2.82843 2980.96 2.07944 32768

TRY AND COMMENT YOUR CODE...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You

Tuesday, 11 February 2025

101.FIND | COMPARE | VERIFY | AMPERSAND & | PROPCASE | SUBSTR | INDEX FUNCTIONS

FIND | COMPARE | VERIFY | AMPERSAND & | PROPCASE | SUBSTR | INDEX FUNCTIONS 

DATA A1;

A='Further, the company emphasized that much Further';

B=FIND(A,'PANY','I');

C=COMPARE(A,'that');

D='Further, the company emphasized that much';

E=FIND(A,'the');

F=FIND(A,'Fur',4);

G=VERIFY(A,D);

RUN;

PROC PRINT;

RUN;


OUTPUT:

Obs A B C D E F G
1 Further, the company emphasized that much Further 17 -1 Further, the company emphasized that much 4 43 0


DATA A2;

A='ABCJHDLABC';

B='ABCDKJDF';

C=VERIFY(B,A);

RUN;

PROC PRINT;

RUN;


OUTPUT:

Obs A B C
1 ABCJHDLABC ABCDKJDF 5


DATA A3;

INPUT NAME&$ 30.;

CARDS;

Kamireddy jagan reddy  

adithya desh pandey  

ankit patel rathod 

;

RUN;

PROC PRINT;

RUN;


OUTPUT:

Obs NAME
1 Kamireddy jagan reddy
2 adithya desh pandey
3 ankit patel rathod

DATA A4;

SET A3;

A=PROPCASE(NAME);

B=SUBSTR(A,1,1);

C=INDEX(A,' ');

D=SUBSTR(A,C);

FNAME=STRIP(B)||'.'||D;

RUN;

PROC PRINT;

RUN;


OUTPUT:

Obs NAME A B C D FNAME
1 Kamireddy jagan reddy Kamireddy Jagan Reddy K 10 Jagan Reddy K. Jagan Reddy
2 adithya desh pandey Adithya Desh Pandey A 8 Desh Pandey A. Desh Pandey
3 ankit patel rathod Ankit Patel Rathod A 6 Patel Rathod A. Patel Rathod


TRY AND COMMENT YOUR CODE...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You

Monday, 10 February 2025

100.TRANWRD | INDEX | INDEXW | COMPRESS | COMPBL | STRIP | TRIM | CAT | CATX FUNCTIONS

 TRANWRD | INDEX | INDEXW | COMPRESS | COMPBL | STRIP | TRIM | CAT | CATX FUNCTIONS


DATA A0;

A='Kamireddy jagan reddy';

B='adithya desh pandey';

C='ankit patel rathod';

D=TRANWRD(A,'Kamireddy jagan reddy','K.Jagan Reddy');

E=TRANWRD(B,'adithya desh pandey','A.Desh Pandey');

F=TRANWRD(C,'ankit patel rathod','A.Patel Rathod');

RUN;

PROC PRINT;

RUN;


OUTPUT:

Obs A B C D E F
1 Kamireddy jagan reddy adithya desh pandey ankit patel rathod K.Jagan Reddy A.Desh Pandey A.Patel Rathod

DATA A1;

A='          THIS     IS     A     CALCULATOR     ';

B=INDEX(A,'H');

C=INDEXW(A,'IS');

D=COMPRESS(A,'C');

E=COMPBL(A);

RUN;

PROC PRINT;

RUN;


OUTPUT:

Obs A B C D E
1 THIS IS A CALCULATOR 12 20 THIS IS A ALULATOR THIS IS A CALCULATOR


DATA A2;

A='     THIS       IS      A      CALCULATOR    ';

F=RIGHT(A);

G=LEFT(A);

H=STRIP(A);

I=TRIM(A);

RUN;

PROC PRINT;

RUN;


OUTPUT:

Obs A F G H I
1 THIS IS A CALCULATOR THIS IS A CALCULATOR THIS IS A CALCULATOR THIS IS A CALCULATOR THIS IS A CALCULATOR


DATA A3;

A='   THIS  ';

B='    IS  ';

C='   A  CALCULATOR';

D=CAT(A,B,C);

E=CATS(A,B,C);

F=CATT(A,B,C);

G=CATX('/',A,B,C);

RUN;

PROC PRINT;

RUN;


OUTPUT:

Obs A B C D E F G
1 THIS IS A CALCULATOR THIS IS A CALCULATOR THISISA CALCULATOR THIS IS A CALCULATOR THIS/IS/A CALCULATOR


TRY AND COMMENT YOUR CODE...

-->PLEASE READ AND COMMENT THE BLOG...

--PLEASE FOLLOW THE BLOG FOR MORE UPDATES...

--FOLLOW US IN FACEBOOK SASALL4YOU AND JOIN ...

--JOIN US IN FACEBOOK AND TELEGRAM  CHANNEL FOR MORE UPDATES

   CLICK HERE : https://t.me/SasAll4You