ZOO OPERATIONAL PERFORMANCE ANALYSIS USING SAS PROC SQL | PROC FREQ | PROC MEANS | PROC UNIVARIATE | MACROS | INTNX | INTCK | MDY | MERGE | APPEND | TRANSPOSE | SET | PROC SGPLOT
STEP 1 – CREATE MASTER ZOO DATASET
data zoo_master;
format Open_Date Visit_Date date9.;
input Zoo_ID Zoo_Name $ Animals_Count Workers Area Annual_Visitors Open_Date :date9.;
Visit_Date = intnx('month', Open_Date, 6, 'same');
Years_Operating = intck('year', Open_Date, today());
datalines;
1 NehruZoo 350 120 300 1200000 01JAN2000
2 DelhiZoo 420 140 350 1500000 15MAR1995
3 MysoreZoo 280 95 200 850000 10JUN2005
4 ArignarZoo 520 200 600 2100000 01FEB1990
5 IndoreZoo 260 90 180 780000 11AUG2008
6 BhopalZoo 300 110 240 950000 05JUL2003
7 SuratZoo 210 70 160 600000 19APR2010
8 JaipurZoo 390 130 320 1350000 25DEC1998
9 PatnaZoo 340 115 280 1100000 30JAN2002
10 KanpurZoo 310 105 260 1000000 17SEP2004
11 RanchiZoo 230 80 190 650000 14NOV2012
12 GuwahatiZoo 270 90 210 800000 03MAY2009
13 Nandankanan 550 210 650 2300000 01JAN1987
14 Bannerghatta 480 180 550 2000000 21JUN1996
15 AliporeZoo 360 125 300 1400000 09FEB1999
16 RajgirZoo 190 65 140 450000 12APR2015
;
run;
proc print data=zoo_master;
run;
OUTPUT:
| Obs | Open_Date | Visit_Date | Zoo_ID | Zoo_Name | Animals_Count | Workers | Area | Annual_Visitors | Years_Operating |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2000 | 01JUL2000 | 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 26 |
| 2 | 15MAR1995 | 15SEP1995 | 2 | DelhiZoo | 420 | 140 | 350 | 1500000 | 31 |
| 3 | 10JUN2005 | 10DEC2005 | 3 | MysoreZo | 280 | 95 | 200 | 850000 | 21 |
| 4 | 01FEB1990 | 01AUG1990 | 4 | ArignarZ | 520 | 200 | 600 | 2100000 | 36 |
| 5 | 11AUG2008 | 11FEB2009 | 5 | IndoreZo | 260 | 90 | 180 | 780000 | 18 |
| 6 | 05JUL2003 | 05JAN2004 | 6 | BhopalZo | 300 | 110 | 240 | 950000 | 23 |
| 7 | 19APR2010 | 19OCT2010 | 7 | SuratZoo | 210 | 70 | 160 | 600000 | 16 |
| 8 | 25DEC1998 | 25JUN1999 | 8 | JaipurZo | 390 | 130 | 320 | 1350000 | 28 |
| 9 | 30JAN2002 | 30JUL2002 | 9 | PatnaZoo | 340 | 115 | 280 | 1100000 | 24 |
| 10 | 17SEP2004 | 17MAR2005 | 10 | KanpurZo | 310 | 105 | 260 | 1000000 | 22 |
| 11 | 14NOV2012 | 14MAY2013 | 11 | RanchiZo | 230 | 80 | 190 | 650000 | 14 |
| 12 | 03MAY2009 | 03NOV2009 | 12 | Guwahati | 270 | 90 | 210 | 800000 | 17 |
| 13 | 01JAN1987 | 01JUL1987 | 13 | Nandanka | 550 | 210 | 650 | 2300000 | 39 |
| 14 | 21JUN1996 | 21DEC1996 | 14 | Bannergh | 480 | 180 | 550 | 2000000 | 30 |
| 15 | 09FEB1999 | 09AUG1999 | 15 | AliporeZ | 360 | 125 | 300 | 1400000 | 27 |
| 16 | 12APR2015 | 12OCT2015 | 16 | RajgirZo | 190 | 65 | 140 | 450000 | 11 |
STEP 2 – CREATE FINANCIAL DATA (USING SET & APPEND)
data zoo_finance_2024;
set zoo_master;
Revenue = Annual_Visitors * 12;
Maintenance = Animals_Count * 2000;
Year = 2024;
run;
proc print data=zoo_finance_2024;
run;
OUTPUT:
| Obs | Open_Date | Visit_Date | Zoo_ID | Zoo_Name | Animals_Count | Workers | Area | Annual_Visitors | Years_Operating | Revenue | Maintenance | Year |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2000 | 01JUL2000 | 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 26 | 14400000 | 700000 | 2024 |
| 2 | 15MAR1995 | 15SEP1995 | 2 | DelhiZoo | 420 | 140 | 350 | 1500000 | 31 | 18000000 | 840000 | 2024 |
| 3 | 10JUN2005 | 10DEC2005 | 3 | MysoreZo | 280 | 95 | 200 | 850000 | 21 | 10200000 | 560000 | 2024 |
| 4 | 01FEB1990 | 01AUG1990 | 4 | ArignarZ | 520 | 200 | 600 | 2100000 | 36 | 25200000 | 1040000 | 2024 |
| 5 | 11AUG2008 | 11FEB2009 | 5 | IndoreZo | 260 | 90 | 180 | 780000 | 18 | 9360000 | 520000 | 2024 |
| 6 | 05JUL2003 | 05JAN2004 | 6 | BhopalZo | 300 | 110 | 240 | 950000 | 23 | 11400000 | 600000 | 2024 |
| 7 | 19APR2010 | 19OCT2010 | 7 | SuratZoo | 210 | 70 | 160 | 600000 | 16 | 7200000 | 420000 | 2024 |
| 8 | 25DEC1998 | 25JUN1999 | 8 | JaipurZo | 390 | 130 | 320 | 1350000 | 28 | 16200000 | 780000 | 2024 |
| 9 | 30JAN2002 | 30JUL2002 | 9 | PatnaZoo | 340 | 115 | 280 | 1100000 | 24 | 13200000 | 680000 | 2024 |
| 10 | 17SEP2004 | 17MAR2005 | 10 | KanpurZo | 310 | 105 | 260 | 1000000 | 22 | 12000000 | 620000 | 2024 |
| 11 | 14NOV2012 | 14MAY2013 | 11 | RanchiZo | 230 | 80 | 190 | 650000 | 14 | 7800000 | 460000 | 2024 |
| 12 | 03MAY2009 | 03NOV2009 | 12 | Guwahati | 270 | 90 | 210 | 800000 | 17 | 9600000 | 540000 | 2024 |
| 13 | 01JAN1987 | 01JUL1987 | 13 | Nandanka | 550 | 210 | 650 | 2300000 | 39 | 27600000 | 1100000 | 2024 |
| 14 | 21JUN1996 | 21DEC1996 | 14 | Bannergh | 480 | 180 | 550 | 2000000 | 30 | 24000000 | 960000 | 2024 |
| 15 | 09FEB1999 | 09AUG1999 | 15 | AliporeZ | 360 | 125 | 300 | 1400000 | 27 | 16800000 | 720000 | 2024 |
| 16 | 12APR2015 | 12OCT2015 | 16 | RajgirZo | 190 | 65 | 140 | 450000 | 11 | 5400000 | 380000 | 2024 |
data zoo_finance_2025;
set zoo_master;
Revenue = Annual_Visitors * 13;
Maintenance = Animals_Count * 2200;
Year = 2025;
run;
proc print data=zoo_finance_2025;
run;
OUTPUT:
| Obs | Open_Date | Visit_Date | Zoo_ID | Zoo_Name | Animals_Count | Workers | Area | Annual_Visitors | Years_Operating | Revenue | Maintenance | Year |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2000 | 01JUL2000 | 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 26 | 15600000 | 770000 | 2025 |
| 2 | 15MAR1995 | 15SEP1995 | 2 | DelhiZoo | 420 | 140 | 350 | 1500000 | 31 | 19500000 | 924000 | 2025 |
| 3 | 10JUN2005 | 10DEC2005 | 3 | MysoreZo | 280 | 95 | 200 | 850000 | 21 | 11050000 | 616000 | 2025 |
| 4 | 01FEB1990 | 01AUG1990 | 4 | ArignarZ | 520 | 200 | 600 | 2100000 | 36 | 27300000 | 1144000 | 2025 |
| 5 | 11AUG2008 | 11FEB2009 | 5 | IndoreZo | 260 | 90 | 180 | 780000 | 18 | 10140000 | 572000 | 2025 |
| 6 | 05JUL2003 | 05JAN2004 | 6 | BhopalZo | 300 | 110 | 240 | 950000 | 23 | 12350000 | 660000 | 2025 |
| 7 | 19APR2010 | 19OCT2010 | 7 | SuratZoo | 210 | 70 | 160 | 600000 | 16 | 7800000 | 462000 | 2025 |
| 8 | 25DEC1998 | 25JUN1999 | 8 | JaipurZo | 390 | 130 | 320 | 1350000 | 28 | 17550000 | 858000 | 2025 |
| 9 | 30JAN2002 | 30JUL2002 | 9 | PatnaZoo | 340 | 115 | 280 | 1100000 | 24 | 14300000 | 748000 | 2025 |
| 10 | 17SEP2004 | 17MAR2005 | 10 | KanpurZo | 310 | 105 | 260 | 1000000 | 22 | 13000000 | 682000 | 2025 |
| 11 | 14NOV2012 | 14MAY2013 | 11 | RanchiZo | 230 | 80 | 190 | 650000 | 14 | 8450000 | 506000 | 2025 |
| 12 | 03MAY2009 | 03NOV2009 | 12 | Guwahati | 270 | 90 | 210 | 800000 | 17 | 10400000 | 594000 | 2025 |
| 13 | 01JAN1987 | 01JUL1987 | 13 | Nandanka | 550 | 210 | 650 | 2300000 | 39 | 29900000 | 1210000 | 2025 |
| 14 | 21JUN1996 | 21DEC1996 | 14 | Bannergh | 480 | 180 | 550 | 2000000 | 30 | 26000000 | 1056000 | 2025 |
| 15 | 09FEB1999 | 09AUG1999 | 15 | AliporeZ | 360 | 125 | 300 | 1400000 | 27 | 18200000 | 792000 | 2025 |
| 16 | 12APR2015 | 12OCT2015 | 16 | RajgirZo | 190 | 65 | 140 | 450000 | 11 | 5850000 | 418000 | 2025 |
proc append base=zoo_finance_2024
data=zoo_finance_2025;
run;
proc print data=zoo_finance_2024;
run;
OUTPUT:
| Obs | Open_Date | Visit_Date | Zoo_ID | Zoo_Name | Animals_Count | Workers | Area | Annual_Visitors | Years_Operating | Revenue | Maintenance | Year |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2000 | 01JUL2000 | 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 26 | 14400000 | 700000 | 2024 |
| 2 | 15MAR1995 | 15SEP1995 | 2 | DelhiZoo | 420 | 140 | 350 | 1500000 | 31 | 18000000 | 840000 | 2024 |
| 3 | 10JUN2005 | 10DEC2005 | 3 | MysoreZo | 280 | 95 | 200 | 850000 | 21 | 10200000 | 560000 | 2024 |
| 4 | 01FEB1990 | 01AUG1990 | 4 | ArignarZ | 520 | 200 | 600 | 2100000 | 36 | 25200000 | 1040000 | 2024 |
| 5 | 11AUG2008 | 11FEB2009 | 5 | IndoreZo | 260 | 90 | 180 | 780000 | 18 | 9360000 | 520000 | 2024 |
| 6 | 05JUL2003 | 05JAN2004 | 6 | BhopalZo | 300 | 110 | 240 | 950000 | 23 | 11400000 | 600000 | 2024 |
| 7 | 19APR2010 | 19OCT2010 | 7 | SuratZoo | 210 | 70 | 160 | 600000 | 16 | 7200000 | 420000 | 2024 |
| 8 | 25DEC1998 | 25JUN1999 | 8 | JaipurZo | 390 | 130 | 320 | 1350000 | 28 | 16200000 | 780000 | 2024 |
| 9 | 30JAN2002 | 30JUL2002 | 9 | PatnaZoo | 340 | 115 | 280 | 1100000 | 24 | 13200000 | 680000 | 2024 |
| 10 | 17SEP2004 | 17MAR2005 | 10 | KanpurZo | 310 | 105 | 260 | 1000000 | 22 | 12000000 | 620000 | 2024 |
| 11 | 14NOV2012 | 14MAY2013 | 11 | RanchiZo | 230 | 80 | 190 | 650000 | 14 | 7800000 | 460000 | 2024 |
| 12 | 03MAY2009 | 03NOV2009 | 12 | Guwahati | 270 | 90 | 210 | 800000 | 17 | 9600000 | 540000 | 2024 |
| 13 | 01JAN1987 | 01JUL1987 | 13 | Nandanka | 550 | 210 | 650 | 2300000 | 39 | 27600000 | 1100000 | 2024 |
| 14 | 21JUN1996 | 21DEC1996 | 14 | Bannergh | 480 | 180 | 550 | 2000000 | 30 | 24000000 | 960000 | 2024 |
| 15 | 09FEB1999 | 09AUG1999 | 15 | AliporeZ | 360 | 125 | 300 | 1400000 | 27 | 16800000 | 720000 | 2024 |
| 16 | 12APR2015 | 12OCT2015 | 16 | RajgirZo | 190 | 65 | 140 | 450000 | 11 | 5400000 | 380000 | 2024 |
| 17 | 01JAN2000 | 01JUL2000 | 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 26 | 15600000 | 770000 | 2025 |
| 18 | 15MAR1995 | 15SEP1995 | 2 | DelhiZoo | 420 | 140 | 350 | 1500000 | 31 | 19500000 | 924000 | 2025 |
| 19 | 10JUN2005 | 10DEC2005 | 3 | MysoreZo | 280 | 95 | 200 | 850000 | 21 | 11050000 | 616000 | 2025 |
| 20 | 01FEB1990 | 01AUG1990 | 4 | ArignarZ | 520 | 200 | 600 | 2100000 | 36 | 27300000 | 1144000 | 2025 |
| 21 | 11AUG2008 | 11FEB2009 | 5 | IndoreZo | 260 | 90 | 180 | 780000 | 18 | 10140000 | 572000 | 2025 |
| 22 | 05JUL2003 | 05JAN2004 | 6 | BhopalZo | 300 | 110 | 240 | 950000 | 23 | 12350000 | 660000 | 2025 |
| 23 | 19APR2010 | 19OCT2010 | 7 | SuratZoo | 210 | 70 | 160 | 600000 | 16 | 7800000 | 462000 | 2025 |
| 24 | 25DEC1998 | 25JUN1999 | 8 | JaipurZo | 390 | 130 | 320 | 1350000 | 28 | 17550000 | 858000 | 2025 |
| 25 | 30JAN2002 | 30JUL2002 | 9 | PatnaZoo | 340 | 115 | 280 | 1100000 | 24 | 14300000 | 748000 | 2025 |
| 26 | 17SEP2004 | 17MAR2005 | 10 | KanpurZo | 310 | 105 | 260 | 1000000 | 22 | 13000000 | 682000 | 2025 |
| 27 | 14NOV2012 | 14MAY2013 | 11 | RanchiZo | 230 | 80 | 190 | 650000 | 14 | 8450000 | 506000 | 2025 |
| 28 | 03MAY2009 | 03NOV2009 | 12 | Guwahati | 270 | 90 | 210 | 800000 | 17 | 10400000 | 594000 | 2025 |
| 29 | 01JAN1987 | 01JUL1987 | 13 | Nandanka | 550 | 210 | 650 | 2300000 | 39 | 29900000 | 1210000 | 2025 |
| 30 | 21JUN1996 | 21DEC1996 | 14 | Bannergh | 480 | 180 | 550 | 2000000 | 30 | 26000000 | 1056000 | 2025 |
| 31 | 09FEB1999 | 09AUG1999 | 15 | AliporeZ | 360 | 125 | 300 | 1400000 | 27 | 18200000 | 792000 | 2025 |
| 32 | 12APR2015 | 12OCT2015 | 16 | RajgirZo | 190 | 65 | 140 | 450000 | 11 | 5850000 | 418000 | 2025 |
STEP 3 – MERGE OPERATIONAL AND FINANCIAL DATA
proc sort data=zoo_master; by Zoo_ID; run;
proc print data=zoo_master;
run;
OUTPUT:
| Obs | Open_Date | Visit_Date | Zoo_ID | Zoo_Name | Animals_Count | Workers | Area | Annual_Visitors | Years_Operating |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2000 | 01JUL2000 | 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 26 |
| 2 | 15MAR1995 | 15SEP1995 | 2 | DelhiZoo | 420 | 140 | 350 | 1500000 | 31 |
| 3 | 10JUN2005 | 10DEC2005 | 3 | MysoreZo | 280 | 95 | 200 | 850000 | 21 |
| 4 | 01FEB1990 | 01AUG1990 | 4 | ArignarZ | 520 | 200 | 600 | 2100000 | 36 |
| 5 | 11AUG2008 | 11FEB2009 | 5 | IndoreZo | 260 | 90 | 180 | 780000 | 18 |
| 6 | 05JUL2003 | 05JAN2004 | 6 | BhopalZo | 300 | 110 | 240 | 950000 | 23 |
| 7 | 19APR2010 | 19OCT2010 | 7 | SuratZoo | 210 | 70 | 160 | 600000 | 16 |
| 8 | 25DEC1998 | 25JUN1999 | 8 | JaipurZo | 390 | 130 | 320 | 1350000 | 28 |
| 9 | 30JAN2002 | 30JUL2002 | 9 | PatnaZoo | 340 | 115 | 280 | 1100000 | 24 |
| 10 | 17SEP2004 | 17MAR2005 | 10 | KanpurZo | 310 | 105 | 260 | 1000000 | 22 |
| 11 | 14NOV2012 | 14MAY2013 | 11 | RanchiZo | 230 | 80 | 190 | 650000 | 14 |
| 12 | 03MAY2009 | 03NOV2009 | 12 | Guwahati | 270 | 90 | 210 | 800000 | 17 |
| 13 | 01JAN1987 | 01JUL1987 | 13 | Nandanka | 550 | 210 | 650 | 2300000 | 39 |
| 14 | 21JUN1996 | 21DEC1996 | 14 | Bannergh | 480 | 180 | 550 | 2000000 | 30 |
| 15 | 09FEB1999 | 09AUG1999 | 15 | AliporeZ | 360 | 125 | 300 | 1400000 | 27 |
| 16 | 12APR2015 | 12OCT2015 | 16 | RajgirZo | 190 | 65 | 140 | 450000 | 11 |
proc sort data=zoo_finance_2024; by Zoo_ID; run;
proc print data=zoo_finance_2024;
run;
OUTPUT:
| Obs | Open_Date | Visit_Date | Zoo_ID | Zoo_Name | Animals_Count | Workers | Area | Annual_Visitors | Years_Operating | Revenue | Maintenance | Year |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2000 | 01JUL2000 | 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 26 | 14400000 | 700000 | 2024 |
| 2 | 01JAN2000 | 01JUL2000 | 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 26 | 15600000 | 770000 | 2025 |
| 3 | 15MAR1995 | 15SEP1995 | 2 | DelhiZoo | 420 | 140 | 350 | 1500000 | 31 | 18000000 | 840000 | 2024 |
| 4 | 15MAR1995 | 15SEP1995 | 2 | DelhiZoo | 420 | 140 | 350 | 1500000 | 31 | 19500000 | 924000 | 2025 |
| 5 | 10JUN2005 | 10DEC2005 | 3 | MysoreZo | 280 | 95 | 200 | 850000 | 21 | 10200000 | 560000 | 2024 |
| 6 | 10JUN2005 | 10DEC2005 | 3 | MysoreZo | 280 | 95 | 200 | 850000 | 21 | 11050000 | 616000 | 2025 |
| 7 | 01FEB1990 | 01AUG1990 | 4 | ArignarZ | 520 | 200 | 600 | 2100000 | 36 | 25200000 | 1040000 | 2024 |
| 8 | 01FEB1990 | 01AUG1990 | 4 | ArignarZ | 520 | 200 | 600 | 2100000 | 36 | 27300000 | 1144000 | 2025 |
| 9 | 11AUG2008 | 11FEB2009 | 5 | IndoreZo | 260 | 90 | 180 | 780000 | 18 | 9360000 | 520000 | 2024 |
| 10 | 11AUG2008 | 11FEB2009 | 5 | IndoreZo | 260 | 90 | 180 | 780000 | 18 | 10140000 | 572000 | 2025 |
| 11 | 05JUL2003 | 05JAN2004 | 6 | BhopalZo | 300 | 110 | 240 | 950000 | 23 | 11400000 | 600000 | 2024 |
| 12 | 05JUL2003 | 05JAN2004 | 6 | BhopalZo | 300 | 110 | 240 | 950000 | 23 | 12350000 | 660000 | 2025 |
| 13 | 19APR2010 | 19OCT2010 | 7 | SuratZoo | 210 | 70 | 160 | 600000 | 16 | 7200000 | 420000 | 2024 |
| 14 | 19APR2010 | 19OCT2010 | 7 | SuratZoo | 210 | 70 | 160 | 600000 | 16 | 7800000 | 462000 | 2025 |
| 15 | 25DEC1998 | 25JUN1999 | 8 | JaipurZo | 390 | 130 | 320 | 1350000 | 28 | 16200000 | 780000 | 2024 |
| 16 | 25DEC1998 | 25JUN1999 | 8 | JaipurZo | 390 | 130 | 320 | 1350000 | 28 | 17550000 | 858000 | 2025 |
| 17 | 30JAN2002 | 30JUL2002 | 9 | PatnaZoo | 340 | 115 | 280 | 1100000 | 24 | 13200000 | 680000 | 2024 |
| 18 | 30JAN2002 | 30JUL2002 | 9 | PatnaZoo | 340 | 115 | 280 | 1100000 | 24 | 14300000 | 748000 | 2025 |
| 19 | 17SEP2004 | 17MAR2005 | 10 | KanpurZo | 310 | 105 | 260 | 1000000 | 22 | 12000000 | 620000 | 2024 |
| 20 | 17SEP2004 | 17MAR2005 | 10 | KanpurZo | 310 | 105 | 260 | 1000000 | 22 | 13000000 | 682000 | 2025 |
| 21 | 14NOV2012 | 14MAY2013 | 11 | RanchiZo | 230 | 80 | 190 | 650000 | 14 | 7800000 | 460000 | 2024 |
| 22 | 14NOV2012 | 14MAY2013 | 11 | RanchiZo | 230 | 80 | 190 | 650000 | 14 | 8450000 | 506000 | 2025 |
| 23 | 03MAY2009 | 03NOV2009 | 12 | Guwahati | 270 | 90 | 210 | 800000 | 17 | 9600000 | 540000 | 2024 |
| 24 | 03MAY2009 | 03NOV2009 | 12 | Guwahati | 270 | 90 | 210 | 800000 | 17 | 10400000 | 594000 | 2025 |
| 25 | 01JAN1987 | 01JUL1987 | 13 | Nandanka | 550 | 210 | 650 | 2300000 | 39 | 27600000 | 1100000 | 2024 |
| 26 | 01JAN1987 | 01JUL1987 | 13 | Nandanka | 550 | 210 | 650 | 2300000 | 39 | 29900000 | 1210000 | 2025 |
| 27 | 21JUN1996 | 21DEC1996 | 14 | Bannergh | 480 | 180 | 550 | 2000000 | 30 | 24000000 | 960000 | 2024 |
| 28 | 21JUN1996 | 21DEC1996 | 14 | Bannergh | 480 | 180 | 550 | 2000000 | 30 | 26000000 | 1056000 | 2025 |
| 29 | 09FEB1999 | 09AUG1999 | 15 | AliporeZ | 360 | 125 | 300 | 1400000 | 27 | 16800000 | 720000 | 2024 |
| 30 | 09FEB1999 | 09AUG1999 | 15 | AliporeZ | 360 | 125 | 300 | 1400000 | 27 | 18200000 | 792000 | 2025 |
| 31 | 12APR2015 | 12OCT2015 | 16 | RajgirZo | 190 | 65 | 140 | 450000 | 11 | 5400000 | 380000 | 2024 |
| 32 | 12APR2015 | 12OCT2015 | 16 | RajgirZo | 190 | 65 | 140 | 450000 | 11 | 5850000 | 418000 | 2025 |
data zoo_full;
merge zoo_master zoo_finance_2024;
by Zoo_ID;
run;
proc print data=zoo_full;
run;
OUTPUT:
| Obs | Open_Date | Visit_Date | Zoo_ID | Zoo_Name | Animals_Count | Workers | Area | Annual_Visitors | Years_Operating | Revenue | Maintenance | Year |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2000 | 01JUL2000 | 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 26 | 14400000 | 700000 | 2024 |
| 2 | 01JAN2000 | 01JUL2000 | 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 26 | 15600000 | 770000 | 2025 |
| 3 | 15MAR1995 | 15SEP1995 | 2 | DelhiZoo | 420 | 140 | 350 | 1500000 | 31 | 18000000 | 840000 | 2024 |
| 4 | 15MAR1995 | 15SEP1995 | 2 | DelhiZoo | 420 | 140 | 350 | 1500000 | 31 | 19500000 | 924000 | 2025 |
| 5 | 10JUN2005 | 10DEC2005 | 3 | MysoreZo | 280 | 95 | 200 | 850000 | 21 | 10200000 | 560000 | 2024 |
| 6 | 10JUN2005 | 10DEC2005 | 3 | MysoreZo | 280 | 95 | 200 | 850000 | 21 | 11050000 | 616000 | 2025 |
| 7 | 01FEB1990 | 01AUG1990 | 4 | ArignarZ | 520 | 200 | 600 | 2100000 | 36 | 25200000 | 1040000 | 2024 |
| 8 | 01FEB1990 | 01AUG1990 | 4 | ArignarZ | 520 | 200 | 600 | 2100000 | 36 | 27300000 | 1144000 | 2025 |
| 9 | 11AUG2008 | 11FEB2009 | 5 | IndoreZo | 260 | 90 | 180 | 780000 | 18 | 9360000 | 520000 | 2024 |
| 10 | 11AUG2008 | 11FEB2009 | 5 | IndoreZo | 260 | 90 | 180 | 780000 | 18 | 10140000 | 572000 | 2025 |
| 11 | 05JUL2003 | 05JAN2004 | 6 | BhopalZo | 300 | 110 | 240 | 950000 | 23 | 11400000 | 600000 | 2024 |
| 12 | 05JUL2003 | 05JAN2004 | 6 | BhopalZo | 300 | 110 | 240 | 950000 | 23 | 12350000 | 660000 | 2025 |
| 13 | 19APR2010 | 19OCT2010 | 7 | SuratZoo | 210 | 70 | 160 | 600000 | 16 | 7200000 | 420000 | 2024 |
| 14 | 19APR2010 | 19OCT2010 | 7 | SuratZoo | 210 | 70 | 160 | 600000 | 16 | 7800000 | 462000 | 2025 |
| 15 | 25DEC1998 | 25JUN1999 | 8 | JaipurZo | 390 | 130 | 320 | 1350000 | 28 | 16200000 | 780000 | 2024 |
| 16 | 25DEC1998 | 25JUN1999 | 8 | JaipurZo | 390 | 130 | 320 | 1350000 | 28 | 17550000 | 858000 | 2025 |
| 17 | 30JAN2002 | 30JUL2002 | 9 | PatnaZoo | 340 | 115 | 280 | 1100000 | 24 | 13200000 | 680000 | 2024 |
| 18 | 30JAN2002 | 30JUL2002 | 9 | PatnaZoo | 340 | 115 | 280 | 1100000 | 24 | 14300000 | 748000 | 2025 |
| 19 | 17SEP2004 | 17MAR2005 | 10 | KanpurZo | 310 | 105 | 260 | 1000000 | 22 | 12000000 | 620000 | 2024 |
| 20 | 17SEP2004 | 17MAR2005 | 10 | KanpurZo | 310 | 105 | 260 | 1000000 | 22 | 13000000 | 682000 | 2025 |
| 21 | 14NOV2012 | 14MAY2013 | 11 | RanchiZo | 230 | 80 | 190 | 650000 | 14 | 7800000 | 460000 | 2024 |
| 22 | 14NOV2012 | 14MAY2013 | 11 | RanchiZo | 230 | 80 | 190 | 650000 | 14 | 8450000 | 506000 | 2025 |
| 23 | 03MAY2009 | 03NOV2009 | 12 | Guwahati | 270 | 90 | 210 | 800000 | 17 | 9600000 | 540000 | 2024 |
| 24 | 03MAY2009 | 03NOV2009 | 12 | Guwahati | 270 | 90 | 210 | 800000 | 17 | 10400000 | 594000 | 2025 |
| 25 | 01JAN1987 | 01JUL1987 | 13 | Nandanka | 550 | 210 | 650 | 2300000 | 39 | 27600000 | 1100000 | 2024 |
| 26 | 01JAN1987 | 01JUL1987 | 13 | Nandanka | 550 | 210 | 650 | 2300000 | 39 | 29900000 | 1210000 | 2025 |
| 27 | 21JUN1996 | 21DEC1996 | 14 | Bannergh | 480 | 180 | 550 | 2000000 | 30 | 24000000 | 960000 | 2024 |
| 28 | 21JUN1996 | 21DEC1996 | 14 | Bannergh | 480 | 180 | 550 | 2000000 | 30 | 26000000 | 1056000 | 2025 |
| 29 | 09FEB1999 | 09AUG1999 | 15 | AliporeZ | 360 | 125 | 300 | 1400000 | 27 | 16800000 | 720000 | 2024 |
| 30 | 09FEB1999 | 09AUG1999 | 15 | AliporeZ | 360 | 125 | 300 | 1400000 | 27 | 18200000 | 792000 | 2025 |
| 31 | 12APR2015 | 12OCT2015 | 16 | RajgirZo | 190 | 65 | 140 | 450000 | 11 | 5400000 | 380000 | 2024 |
| 32 | 12APR2015 | 12OCT2015 | 16 | RajgirZo | 190 | 65 | 140 | 450000 | 11 | 5850000 | 418000 | 2025 |
STEP 4 – CREATE EFFICIENCY METRICS
data zoo_metrics;
set zoo_full;
Visitors_per_Animal = Annual_Visitors / Animals_Count;
Visitors_per_Worker = Annual_Visitors / Workers;
Revenue_per_Acre = Revenue / Area;
run;
proc print data=zoo_metrics;
run;
OUTPUT:
| Obs | Open_Date | Visit_Date | Zoo_ID | Zoo_Name | Animals_Count | Workers | Area | Annual_Visitors | Years_Operating | Revenue | Maintenance | Year | Visitors_per_Animal | Visitors_per_Worker | Revenue_per_Acre |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2000 | 01JUL2000 | 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 26 | 14400000 | 700000 | 2024 | 3428.57 | 10000.00 | 48000.00 |
| 2 | 01JAN2000 | 01JUL2000 | 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 26 | 15600000 | 770000 | 2025 | 3428.57 | 10000.00 | 52000.00 |
| 3 | 15MAR1995 | 15SEP1995 | 2 | DelhiZoo | 420 | 140 | 350 | 1500000 | 31 | 18000000 | 840000 | 2024 | 3571.43 | 10714.29 | 51428.57 |
| 4 | 15MAR1995 | 15SEP1995 | 2 | DelhiZoo | 420 | 140 | 350 | 1500000 | 31 | 19500000 | 924000 | 2025 | 3571.43 | 10714.29 | 55714.29 |
| 5 | 10JUN2005 | 10DEC2005 | 3 | MysoreZo | 280 | 95 | 200 | 850000 | 21 | 10200000 | 560000 | 2024 | 3035.71 | 8947.37 | 51000.00 |
| 6 | 10JUN2005 | 10DEC2005 | 3 | MysoreZo | 280 | 95 | 200 | 850000 | 21 | 11050000 | 616000 | 2025 | 3035.71 | 8947.37 | 55250.00 |
| 7 | 01FEB1990 | 01AUG1990 | 4 | ArignarZ | 520 | 200 | 600 | 2100000 | 36 | 25200000 | 1040000 | 2024 | 4038.46 | 10500.00 | 42000.00 |
| 8 | 01FEB1990 | 01AUG1990 | 4 | ArignarZ | 520 | 200 | 600 | 2100000 | 36 | 27300000 | 1144000 | 2025 | 4038.46 | 10500.00 | 45500.00 |
| 9 | 11AUG2008 | 11FEB2009 | 5 | IndoreZo | 260 | 90 | 180 | 780000 | 18 | 9360000 | 520000 | 2024 | 3000.00 | 8666.67 | 52000.00 |
| 10 | 11AUG2008 | 11FEB2009 | 5 | IndoreZo | 260 | 90 | 180 | 780000 | 18 | 10140000 | 572000 | 2025 | 3000.00 | 8666.67 | 56333.33 |
| 11 | 05JUL2003 | 05JAN2004 | 6 | BhopalZo | 300 | 110 | 240 | 950000 | 23 | 11400000 | 600000 | 2024 | 3166.67 | 8636.36 | 47500.00 |
| 12 | 05JUL2003 | 05JAN2004 | 6 | BhopalZo | 300 | 110 | 240 | 950000 | 23 | 12350000 | 660000 | 2025 | 3166.67 | 8636.36 | 51458.33 |
| 13 | 19APR2010 | 19OCT2010 | 7 | SuratZoo | 210 | 70 | 160 | 600000 | 16 | 7200000 | 420000 | 2024 | 2857.14 | 8571.43 | 45000.00 |
| 14 | 19APR2010 | 19OCT2010 | 7 | SuratZoo | 210 | 70 | 160 | 600000 | 16 | 7800000 | 462000 | 2025 | 2857.14 | 8571.43 | 48750.00 |
| 15 | 25DEC1998 | 25JUN1999 | 8 | JaipurZo | 390 | 130 | 320 | 1350000 | 28 | 16200000 | 780000 | 2024 | 3461.54 | 10384.62 | 50625.00 |
| 16 | 25DEC1998 | 25JUN1999 | 8 | JaipurZo | 390 | 130 | 320 | 1350000 | 28 | 17550000 | 858000 | 2025 | 3461.54 | 10384.62 | 54843.75 |
| 17 | 30JAN2002 | 30JUL2002 | 9 | PatnaZoo | 340 | 115 | 280 | 1100000 | 24 | 13200000 | 680000 | 2024 | 3235.29 | 9565.22 | 47142.86 |
| 18 | 30JAN2002 | 30JUL2002 | 9 | PatnaZoo | 340 | 115 | 280 | 1100000 | 24 | 14300000 | 748000 | 2025 | 3235.29 | 9565.22 | 51071.43 |
| 19 | 17SEP2004 | 17MAR2005 | 10 | KanpurZo | 310 | 105 | 260 | 1000000 | 22 | 12000000 | 620000 | 2024 | 3225.81 | 9523.81 | 46153.85 |
| 20 | 17SEP2004 | 17MAR2005 | 10 | KanpurZo | 310 | 105 | 260 | 1000000 | 22 | 13000000 | 682000 | 2025 | 3225.81 | 9523.81 | 50000.00 |
| 21 | 14NOV2012 | 14MAY2013 | 11 | RanchiZo | 230 | 80 | 190 | 650000 | 14 | 7800000 | 460000 | 2024 | 2826.09 | 8125.00 | 41052.63 |
| 22 | 14NOV2012 | 14MAY2013 | 11 | RanchiZo | 230 | 80 | 190 | 650000 | 14 | 8450000 | 506000 | 2025 | 2826.09 | 8125.00 | 44473.68 |
| 23 | 03MAY2009 | 03NOV2009 | 12 | Guwahati | 270 | 90 | 210 | 800000 | 17 | 9600000 | 540000 | 2024 | 2962.96 | 8888.89 | 45714.29 |
| 24 | 03MAY2009 | 03NOV2009 | 12 | Guwahati | 270 | 90 | 210 | 800000 | 17 | 10400000 | 594000 | 2025 | 2962.96 | 8888.89 | 49523.81 |
| 25 | 01JAN1987 | 01JUL1987 | 13 | Nandanka | 550 | 210 | 650 | 2300000 | 39 | 27600000 | 1100000 | 2024 | 4181.82 | 10952.38 | 42461.54 |
| 26 | 01JAN1987 | 01JUL1987 | 13 | Nandanka | 550 | 210 | 650 | 2300000 | 39 | 29900000 | 1210000 | 2025 | 4181.82 | 10952.38 | 46000.00 |
| 27 | 21JUN1996 | 21DEC1996 | 14 | Bannergh | 480 | 180 | 550 | 2000000 | 30 | 24000000 | 960000 | 2024 | 4166.67 | 11111.11 | 43636.36 |
| 28 | 21JUN1996 | 21DEC1996 | 14 | Bannergh | 480 | 180 | 550 | 2000000 | 30 | 26000000 | 1056000 | 2025 | 4166.67 | 11111.11 | 47272.73 |
| 29 | 09FEB1999 | 09AUG1999 | 15 | AliporeZ | 360 | 125 | 300 | 1400000 | 27 | 16800000 | 720000 | 2024 | 3888.89 | 11200.00 | 56000.00 |
| 30 | 09FEB1999 | 09AUG1999 | 15 | AliporeZ | 360 | 125 | 300 | 1400000 | 27 | 18200000 | 792000 | 2025 | 3888.89 | 11200.00 | 60666.67 |
| 31 | 12APR2015 | 12OCT2015 | 16 | RajgirZo | 190 | 65 | 140 | 450000 | 11 | 5400000 | 380000 | 2024 | 2368.42 | 6923.08 | 38571.43 |
| 32 | 12APR2015 | 12OCT2015 | 16 | RajgirZo | 190 | 65 | 140 | 450000 | 11 | 5850000 | 418000 | 2025 | 2368.42 | 6923.08 | 41785.71 |
STEP 5 – MACRO FOR ZOO EFFICIENCY GROUPING
%macro efficiency;
data zoo_efficiency;
set zoo_metrics;
if Visitors_per_Worker > 12000 then Efficiency = "EXCELLENT";
else if Visitors_per_Worker > 8000 then Efficiency = "GOOD";
else Efficiency = "LOW";
run;
proc print data=zoo_efficiency;
run;
%mend;
%efficiency;
OUTPUT:
| Obs | Open_Date | Visit_Date | Zoo_ID | Zoo_Name | Animals_Count | Workers | Area | Annual_Visitors | Years_Operating | Revenue | Maintenance | Year | Visitors_per_Animal | Visitors_per_Worker | Revenue_per_Acre | Efficiency |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2000 | 01JUL2000 | 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 26 | 14400000 | 700000 | 2024 | 3428.57 | 10000.00 | 48000.00 | GOOD |
| 2 | 01JAN2000 | 01JUL2000 | 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 26 | 15600000 | 770000 | 2025 | 3428.57 | 10000.00 | 52000.00 | GOOD |
| 3 | 15MAR1995 | 15SEP1995 | 2 | DelhiZoo | 420 | 140 | 350 | 1500000 | 31 | 18000000 | 840000 | 2024 | 3571.43 | 10714.29 | 51428.57 | GOOD |
| 4 | 15MAR1995 | 15SEP1995 | 2 | DelhiZoo | 420 | 140 | 350 | 1500000 | 31 | 19500000 | 924000 | 2025 | 3571.43 | 10714.29 | 55714.29 | GOOD |
| 5 | 10JUN2005 | 10DEC2005 | 3 | MysoreZo | 280 | 95 | 200 | 850000 | 21 | 10200000 | 560000 | 2024 | 3035.71 | 8947.37 | 51000.00 | GOOD |
| 6 | 10JUN2005 | 10DEC2005 | 3 | MysoreZo | 280 | 95 | 200 | 850000 | 21 | 11050000 | 616000 | 2025 | 3035.71 | 8947.37 | 55250.00 | GOOD |
| 7 | 01FEB1990 | 01AUG1990 | 4 | ArignarZ | 520 | 200 | 600 | 2100000 | 36 | 25200000 | 1040000 | 2024 | 4038.46 | 10500.00 | 42000.00 | GOOD |
| 8 | 01FEB1990 | 01AUG1990 | 4 | ArignarZ | 520 | 200 | 600 | 2100000 | 36 | 27300000 | 1144000 | 2025 | 4038.46 | 10500.00 | 45500.00 | GOOD |
| 9 | 11AUG2008 | 11FEB2009 | 5 | IndoreZo | 260 | 90 | 180 | 780000 | 18 | 9360000 | 520000 | 2024 | 3000.00 | 8666.67 | 52000.00 | GOOD |
| 10 | 11AUG2008 | 11FEB2009 | 5 | IndoreZo | 260 | 90 | 180 | 780000 | 18 | 10140000 | 572000 | 2025 | 3000.00 | 8666.67 | 56333.33 | GOOD |
| 11 | 05JUL2003 | 05JAN2004 | 6 | BhopalZo | 300 | 110 | 240 | 950000 | 23 | 11400000 | 600000 | 2024 | 3166.67 | 8636.36 | 47500.00 | GOOD |
| 12 | 05JUL2003 | 05JAN2004 | 6 | BhopalZo | 300 | 110 | 240 | 950000 | 23 | 12350000 | 660000 | 2025 | 3166.67 | 8636.36 | 51458.33 | GOOD |
| 13 | 19APR2010 | 19OCT2010 | 7 | SuratZoo | 210 | 70 | 160 | 600000 | 16 | 7200000 | 420000 | 2024 | 2857.14 | 8571.43 | 45000.00 | GOOD |
| 14 | 19APR2010 | 19OCT2010 | 7 | SuratZoo | 210 | 70 | 160 | 600000 | 16 | 7800000 | 462000 | 2025 | 2857.14 | 8571.43 | 48750.00 | GOOD |
| 15 | 25DEC1998 | 25JUN1999 | 8 | JaipurZo | 390 | 130 | 320 | 1350000 | 28 | 16200000 | 780000 | 2024 | 3461.54 | 10384.62 | 50625.00 | GOOD |
| 16 | 25DEC1998 | 25JUN1999 | 8 | JaipurZo | 390 | 130 | 320 | 1350000 | 28 | 17550000 | 858000 | 2025 | 3461.54 | 10384.62 | 54843.75 | GOOD |
| 17 | 30JAN2002 | 30JUL2002 | 9 | PatnaZoo | 340 | 115 | 280 | 1100000 | 24 | 13200000 | 680000 | 2024 | 3235.29 | 9565.22 | 47142.86 | GOOD |
| 18 | 30JAN2002 | 30JUL2002 | 9 | PatnaZoo | 340 | 115 | 280 | 1100000 | 24 | 14300000 | 748000 | 2025 | 3235.29 | 9565.22 | 51071.43 | GOOD |
| 19 | 17SEP2004 | 17MAR2005 | 10 | KanpurZo | 310 | 105 | 260 | 1000000 | 22 | 12000000 | 620000 | 2024 | 3225.81 | 9523.81 | 46153.85 | GOOD |
| 20 | 17SEP2004 | 17MAR2005 | 10 | KanpurZo | 310 | 105 | 260 | 1000000 | 22 | 13000000 | 682000 | 2025 | 3225.81 | 9523.81 | 50000.00 | GOOD |
| 21 | 14NOV2012 | 14MAY2013 | 11 | RanchiZo | 230 | 80 | 190 | 650000 | 14 | 7800000 | 460000 | 2024 | 2826.09 | 8125.00 | 41052.63 | GOOD |
| 22 | 14NOV2012 | 14MAY2013 | 11 | RanchiZo | 230 | 80 | 190 | 650000 | 14 | 8450000 | 506000 | 2025 | 2826.09 | 8125.00 | 44473.68 | GOOD |
| 23 | 03MAY2009 | 03NOV2009 | 12 | Guwahati | 270 | 90 | 210 | 800000 | 17 | 9600000 | 540000 | 2024 | 2962.96 | 8888.89 | 45714.29 | GOOD |
| 24 | 03MAY2009 | 03NOV2009 | 12 | Guwahati | 270 | 90 | 210 | 800000 | 17 | 10400000 | 594000 | 2025 | 2962.96 | 8888.89 | 49523.81 | GOOD |
| 25 | 01JAN1987 | 01JUL1987 | 13 | Nandanka | 550 | 210 | 650 | 2300000 | 39 | 27600000 | 1100000 | 2024 | 4181.82 | 10952.38 | 42461.54 | GOOD |
| 26 | 01JAN1987 | 01JUL1987 | 13 | Nandanka | 550 | 210 | 650 | 2300000 | 39 | 29900000 | 1210000 | 2025 | 4181.82 | 10952.38 | 46000.00 | GOOD |
| 27 | 21JUN1996 | 21DEC1996 | 14 | Bannergh | 480 | 180 | 550 | 2000000 | 30 | 24000000 | 960000 | 2024 | 4166.67 | 11111.11 | 43636.36 | GOOD |
| 28 | 21JUN1996 | 21DEC1996 | 14 | Bannergh | 480 | 180 | 550 | 2000000 | 30 | 26000000 | 1056000 | 2025 | 4166.67 | 11111.11 | 47272.73 | GOOD |
| 29 | 09FEB1999 | 09AUG1999 | 15 | AliporeZ | 360 | 125 | 300 | 1400000 | 27 | 16800000 | 720000 | 2024 | 3888.89 | 11200.00 | 56000.00 | GOOD |
| 30 | 09FEB1999 | 09AUG1999 | 15 | AliporeZ | 360 | 125 | 300 | 1400000 | 27 | 18200000 | 792000 | 2025 | 3888.89 | 11200.00 | 60666.67 | GOOD |
| 31 | 12APR2015 | 12OCT2015 | 16 | RajgirZo | 190 | 65 | 140 | 450000 | 11 | 5400000 | 380000 | 2024 | 2368.42 | 6923.08 | 38571.43 | LOW |
| 32 | 12APR2015 | 12OCT2015 | 16 | RajgirZo | 190 | 65 | 140 | 450000 | 11 | 5850000 | 418000 | 2025 | 2368.42 | 6923.08 | 41785.71 | LOW |
STEP 6 – PROC SQL ANALYSIS
proc sql;
create table zoo_sql as
select Zoo_Name,Animals_Count,Workers,Area,Annual_Visitors,Revenue,Efficiency
from zoo_efficiency
where Annual_Visitors > 900000;
quit;
proc print data=zoo_sql;
run;
OUTPUT:
| Obs | Zoo_Name | Animals_Count | Workers | Area | Annual_Visitors | Revenue | Efficiency |
|---|---|---|---|---|---|---|---|
| 1 | NehruZoo | 350 | 120 | 300 | 1200000 | 14400000 | GOOD |
| 2 | NehruZoo | 350 | 120 | 300 | 1200000 | 15600000 | GOOD |
| 3 | DelhiZoo | 420 | 140 | 350 | 1500000 | 18000000 | GOOD |
| 4 | DelhiZoo | 420 | 140 | 350 | 1500000 | 19500000 | GOOD |
| 5 | ArignarZ | 520 | 200 | 600 | 2100000 | 25200000 | GOOD |
| 6 | ArignarZ | 520 | 200 | 600 | 2100000 | 27300000 | GOOD |
| 7 | BhopalZo | 300 | 110 | 240 | 950000 | 11400000 | GOOD |
| 8 | BhopalZo | 300 | 110 | 240 | 950000 | 12350000 | GOOD |
| 9 | JaipurZo | 390 | 130 | 320 | 1350000 | 16200000 | GOOD |
| 10 | JaipurZo | 390 | 130 | 320 | 1350000 | 17550000 | GOOD |
| 11 | PatnaZoo | 340 | 115 | 280 | 1100000 | 13200000 | GOOD |
| 12 | PatnaZoo | 340 | 115 | 280 | 1100000 | 14300000 | GOOD |
| 13 | KanpurZo | 310 | 105 | 260 | 1000000 | 12000000 | GOOD |
| 14 | KanpurZo | 310 | 105 | 260 | 1000000 | 13000000 | GOOD |
| 15 | Nandanka | 550 | 210 | 650 | 2300000 | 27600000 | GOOD |
| 16 | Nandanka | 550 | 210 | 650 | 2300000 | 29900000 | GOOD |
| 17 | Bannergh | 480 | 180 | 550 | 2000000 | 24000000 | GOOD |
| 18 | Bannergh | 480 | 180 | 550 | 2000000 | 26000000 | GOOD |
| 19 | AliporeZ | 360 | 125 | 300 | 1400000 | 16800000 | GOOD |
| 20 | AliporeZ | 360 | 125 | 300 | 1400000 | 18200000 | GOOD |
STEP 7 – FREQUENCY OF EFFICIENCY GROUPS
proc freq data=zoo_efficiency;
tables Efficiency;
run;
OUTPUT:
The FREQ Procedure
| Efficiency | Frequency | Percent | Cumulative Frequency | Cumulative Percent |
|---|---|---|---|---|
| GOOD | 30 | 93.75 | 30 | 93.75 |
| LOW | 2 | 6.25 | 32 | 100.00 |
STEP 8 – MEANS ANALYSIS
proc means data=zoo_efficiency mean max min;
var Animals_Count Workers Annual_Visitors Revenue;
class Efficiency;
run;
OUTPUT:
The MEANS Procedure
| Efficiency | N Obs | Variable | Mean | Maximum | Minimum |
|---|---|---|---|---|---|
| GOOD | 30 | Animals_Count Workers Annual_Visitors Revenue | 351.3333333 124.0000000 1238666.67 15483333.33 | 550.0000000 210.0000000 2300000.00 29900000.00 | 210.0000000 70.0000000 600000.00 7200000.00 |
| LOW | 2 | Animals_Count Workers Annual_Visitors Revenue | 190.0000000 65.0000000 450000.00 5625000.00 | 190.0000000 65.0000000 450000.00 5850000.00 | 190.0000000 65.0000000 450000.00 5400000.00 |
STEP 9 – UNIVARIATE (DISTRIBUTION CHECK)
proc univariate data=zoo_efficiency;
var Annual_Visitors Revenue Visitors_per_Worker;
run;
OUTPUT:
The UNIVARIATE Procedure
Variable: Annual_Visitors
| Moments | |||
|---|---|---|---|
| N | 32 | Sum Weights | 32 |
| Mean | 1189375 | Sum Observations | 38060000 |
| Std Deviation | 545189.742 | Variance | 2.97232E11 |
| Skewness | 0.74207559 | Kurtosis | -0.4543229 |
| Uncorrected SS | 5.44818E13 | Corrected SS | 9.21419E12 |
| Coeff Variation | 45.8383388 | Std Error Mean | 96376.8409 |
| Basic Statistical Measures | |||
|---|---|---|---|
| Location | Variability | ||
| Mean | 1189375 | Std Deviation | 545190 |
| Median | 1050000 | Variance | 2.97232E11 |
| Mode | 450000 | Range | 1850000 |
| Interquartile Range | 660000 | ||
Note: The mode displayed is the smallest of 16 modes with a count of 2.
| Tests for Location: Mu0=0 | ||||
|---|---|---|---|---|
| Test | Statistic | p Value | ||
| Student's t | t | 12.34088 | Pr > |t| | <.0001 |
| Sign | M | 16 | Pr >= |M| | <.0001 |
| Signed Rank | S | 264 | Pr >= |S| | <.0001 |
| Quantiles (Definition 5) | |
|---|---|
| Level | Quantile |
| 100% Max | 2300000 |
| 99% | 2300000 |
| 95% | 2300000 |
| 90% | 2100000 |
| 75% Q3 | 1450000 |
| 50% Median | 1050000 |
| 25% Q1 | 790000 |
| 10% | 600000 |
| 5% | 450000 |
| 1% | 450000 |
| 0% Min | 450000 |
| Extreme Observations | |||
|---|---|---|---|
| Lowest | Highest | ||
| Value | Obs | Value | Obs |
| 450000 | 32 | 2000000 | 28 |
| 450000 | 31 | 2100000 | 7 |
| 600000 | 14 | 2100000 | 8 |
| 600000 | 13 | 2300000 | 25 |
| 650000 | 22 | 2300000 | 26 |
The UNIVARIATE Procedure
Variable: Revenue
| Moments | |||
|---|---|---|---|
| N | 32 | Sum Weights | 32 |
| Mean | 14867187.5 | Sum Observations | 475750000 |
| Std Deviation | 6847031.96 | Variance | 4.68818E13 |
| Skewness | 0.75720622 | Kurtosis | -0.391413 |
| Uncorrected SS | 8.5264E15 | Corrected SS | 1.45334E15 |
| Coeff Variation | 46.0546553 | Std Error Mean | 1210395.68 |
| Basic Statistical Measures | |||
|---|---|---|---|
| Location | Variability | ||
| Mean | 14867188 | Std Deviation | 6847032 |
| Median | 13100000 | Variance | 4.68818E13 |
| Mode | 7800000 | Range | 24500000 |
| Interquartile Range | 8230000 | ||
| Tests for Location: Mu0=0 | ||||
|---|---|---|---|---|
| Test | Statistic | p Value | ||
| Student's t | t | 12.28292 | Pr > |t| | <.0001 |
| Sign | M | 16 | Pr >= |M| | <.0001 |
| Signed Rank | S | 264 | Pr >= |S| | <.0001 |
| Quantiles (Definition 5) | |
|---|---|
| Level | Quantile |
| 100% Max | 29900000 |
| 99% | 29900000 |
| 95% | 27600000 |
| 90% | 26000000 |
| 75% Q3 | 18100000 |
| 50% Median | 13100000 |
| 25% Q1 | 9870000 |
| 10% | 7800000 |
| 5% | 5850000 |
| 1% | 5400000 |
| 0% Min | 5400000 |
| Extreme Observations | |||
|---|---|---|---|
| Lowest | Highest | ||
| Value | Obs | Value | Obs |
| 5400000 | 31 | 25200000 | 7 |
| 5850000 | 32 | 26000000 | 28 |
| 7200000 | 13 | 27300000 | 8 |
| 7800000 | 21 | 27600000 | 25 |
| 7800000 | 14 | 29900000 | 26 |
The UNIVARIATE Procedure
Variable: Visitors_per_Worker
| Moments | |||
|---|---|---|---|
| N | 32 | Sum Weights | 32 |
| Mean | 9544.38832 | Sum Observations | 305420.426 |
| Std Deviation | 1207.18258 | Variance | 1457289.79 |
| Skewness | -0.3667328 | Kurtosis | -0.5677197 |
| Uncorrected SS | 2960227135 | Corrected SS | 45175983.5 |
| Coeff Variation | 12.6480875 | Std Error Mean | 213.401748 |
| Basic Statistical Measures | |||
|---|---|---|---|
| Location | Variability | ||
| Mean | 9544.388 | Std Deviation | 1207 |
| Median | 9544.513 | Variance | 1457290 |
| Mode | 6923.077 | Range | 4277 |
| Interquartile Range | 1956 | ||
Note: The mode displayed is the smallest of 16 modes with a count of 2.
| Tests for Location: Mu0=0 | ||||
|---|---|---|---|---|
| Test | Statistic | p Value | ||
| Student's t | t | 44.72498 | Pr > |t| | <.0001 |
| Sign | M | 16 | Pr >= |M| | <.0001 |
| Signed Rank | S | 264 | Pr >= |S| | <.0001 |
| Quantiles (Definition 5) | |
|---|---|
| Level | Quantile |
| 100% Max | 11200.00 |
| 99% | 11200.00 |
| 95% | 11200.00 |
| 90% | 11111.11 |
| 75% Q3 | 10607.14 |
| 50% Median | 9544.51 |
| 25% Q1 | 8651.52 |
| 10% | 8125.00 |
| 5% | 6923.08 |
| 1% | 6923.08 |
| 0% Min | 6923.08 |
| Extreme Observations | |||
|---|---|---|---|
| Lowest | Highest | ||
| Value | Obs | Value | Obs |
| 6923.08 | 32 | 10952.4 | 26 |
| 6923.08 | 31 | 11111.1 | 27 |
| 8125.00 | 22 | 11111.1 | 28 |
| 8125.00 | 21 | 11200.0 | 29 |
| 8571.43 | 14 | 11200.0 | 30 |
STEP 10 – TRANSPOSE FOR REPORTING
proc transpose data=zoo_efficiency out=zoo_report;
var Annual_Visitors Revenue Visitors_per_Worker;
by Zoo_Name NotSorted;
run;
proc print data=zoo_report;
run;
OUTPUT:
| Obs | Zoo_Name | _NAME_ | COL1 | COL2 |
|---|---|---|---|---|
| 1 | NehruZoo | Annual_Visitors | 1200000.00 | 1200000.00 |
| 2 | NehruZoo | Revenue | 14400000.00 | 15600000.00 |
| 3 | NehruZoo | Visitors_per_Worker | 10000.00 | 10000.00 |
| 4 | DelhiZoo | Annual_Visitors | 1500000.00 | 1500000.00 |
| 5 | DelhiZoo | Revenue | 18000000.00 | 19500000.00 |
| 6 | DelhiZoo | Visitors_per_Worker | 10714.29 | 10714.29 |
| 7 | MysoreZo | Annual_Visitors | 850000.00 | 850000.00 |
| 8 | MysoreZo | Revenue | 10200000.00 | 11050000.00 |
| 9 | MysoreZo | Visitors_per_Worker | 8947.37 | 8947.37 |
| 10 | ArignarZ | Annual_Visitors | 2100000.00 | 2100000.00 |
| 11 | ArignarZ | Revenue | 25200000.00 | 27300000.00 |
| 12 | ArignarZ | Visitors_per_Worker | 10500.00 | 10500.00 |
| 13 | IndoreZo | Annual_Visitors | 780000.00 | 780000.00 |
| 14 | IndoreZo | Revenue | 9360000.00 | 10140000.00 |
| 15 | IndoreZo | Visitors_per_Worker | 8666.67 | 8666.67 |
| 16 | BhopalZo | Annual_Visitors | 950000.00 | 950000.00 |
| 17 | BhopalZo | Revenue | 11400000.00 | 12350000.00 |
| 18 | BhopalZo | Visitors_per_Worker | 8636.36 | 8636.36 |
| 19 | SuratZoo | Annual_Visitors | 600000.00 | 600000.00 |
| 20 | SuratZoo | Revenue | 7200000.00 | 7800000.00 |
| 21 | SuratZoo | Visitors_per_Worker | 8571.43 | 8571.43 |
| 22 | JaipurZo | Annual_Visitors | 1350000.00 | 1350000.00 |
| 23 | JaipurZo | Revenue | 16200000.00 | 17550000.00 |
| 24 | JaipurZo | Visitors_per_Worker | 10384.62 | 10384.62 |
| 25 | PatnaZoo | Annual_Visitors | 1100000.00 | 1100000.00 |
| 26 | PatnaZoo | Revenue | 13200000.00 | 14300000.00 |
| 27 | PatnaZoo | Visitors_per_Worker | 9565.22 | 9565.22 |
| 28 | KanpurZo | Annual_Visitors | 1000000.00 | 1000000.00 |
| 29 | KanpurZo | Revenue | 12000000.00 | 13000000.00 |
| 30 | KanpurZo | Visitors_per_Worker | 9523.81 | 9523.81 |
| 31 | RanchiZo | Annual_Visitors | 650000.00 | 650000.00 |
| 32 | RanchiZo | Revenue | 7800000.00 | 8450000.00 |
| 33 | RanchiZo | Visitors_per_Worker | 8125.00 | 8125.00 |
| 34 | Guwahati | Annual_Visitors | 800000.00 | 800000.00 |
| 35 | Guwahati | Revenue | 9600000.00 | 10400000.00 |
| 36 | Guwahati | Visitors_per_Worker | 8888.89 | 8888.89 |
| 37 | Nandanka | Annual_Visitors | 2300000.00 | 2300000.00 |
| 38 | Nandanka | Revenue | 27600000.00 | 29900000.00 |
| 39 | Nandanka | Visitors_per_Worker | 10952.38 | 10952.38 |
| 40 | Bannergh | Annual_Visitors | 2000000.00 | 2000000.00 |
| 41 | Bannergh | Revenue | 24000000.00 | 26000000.00 |
| 42 | Bannergh | Visitors_per_Worker | 11111.11 | 11111.11 |
| 43 | AliporeZ | Annual_Visitors | 1400000.00 | 1400000.00 |
| 44 | AliporeZ | Revenue | 16800000.00 | 18200000.00 |
| 45 | AliporeZ | Visitors_per_Worker | 11200.00 | 11200.00 |
| 46 | RajgirZo | Annual_Visitors | 450000.00 | 450000.00 |
| 47 | RajgirZo | Revenue | 5400000.00 | 5850000.00 |
| 48 | RajgirZo | Visitors_per_Worker | 6923.08 | 6923.08 |
STEP 11 - PROC SGPLOT VISUALIZATIONS
11.1 Visitors vs Animals
proc sgplot data=zoo_efficiency;
scatter x=Animals_Count y=Annual_Visitors;
title "Relationship Between Animals and Visitors";
run;
OUTPUT:
11.2 Visitors per Worker by Zoo
proc sgplot data=zoo_efficiency;
vbar Zoo_Name / response=Visitors_per_Worker;
title "Staff Productivity by Zoo";
run;
OUTPUT:
11.3 Revenue by Efficiency Group
proc sgplot data=zoo_efficiency;
vbox Revenue / category=Efficiency;
title "Revenue Distribution by Efficiency Group";
run;
OUTPUT:
11.4 Visitors Trend by Zoo Age
proc sgplot data=zoo_efficiency;
series x=Years_Operating y=Annual_Visitors;
title "Zoo Maturity vs Visitor Count";
run;
OUTPUT:
No comments:
Post a Comment