397.If a satellite has excellent signal strength but very high latency, can it still deliver good quality communication? Why or why not?A Sas Study

If a satellite has excellent signal strength but very high latency, can it still deliver good quality communication? Why or why not?A Sas Study

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

HERE IN THIS PROJECT WE USED THESE SAS STATEMENTS —
DATA STEP | PROC SQL |  PROC PRINT | PROC SGPLOT | MACROS | PROC CORR | PROC MEANS | PROC FREQ | PROC UNIVARIATE | SET | APPEND | PROC TRANSPOSE | PROC DATASETS DELETE | DATA FUNCTIONS

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

INTRODUCTION

Satellite communication is a backbone of modern connectivity—supporting GPS, TV broadcasting, military operations, disaster management, banking, aviation, telecom, and IoT.

In this project, we simulate a Satellite Communication Links dataset and analyze it using Base SAS, Advanced SAS, SQL, Statistics, Macros, and Data Engineering techniques.

TABLE OF CONTENTS

1.     Business Context

2.     Dataset Design & Variables

3.     Data Creation (DATA Step)

4.     Date Handling (MDY, INTCK, INTNX)

5.     Character & Numeric Functions

6.     Quality & Utilization Macros

7.     Fraud / Anomaly Detection Logic

8.     PROC SQL Analysis

9.     PROC FREQ

10.  PROC MEANS

11.  PROC UNIVARIATE

12.  PROC CORR

13.  PROC SGPLOT

14.  SET, MERGE, APPEND

15.  PROC TRANSPOSE

16.  PROC DATASETS DELETE

17.  Business Insights

18.  Conclusion

1. BUSINESS CONTEXT

Satellite operators must constantly monitor:

·       Signal quality

·       Data throughput

·       Latency

·       Interference

·       Fraudulent or abnormal usage

Poor quality links can cause:

·       Call drops

·       Navigation errors

·       Military risks

·       Financial losses

This SAS project simulates monitoring & analytics used by:

·       ISRO

·       SpaceX

·       Satellite ISPs

·       Defense organizations

2. DATASET DESIGN

Core Variables

Variable

Description

Satellite_ID

Unique satellite identifier

Band_Type

Frequency band (C, Ku, Ka, X)

Signal_Strength

Signal power (dB)

Latency_ms

Communication delay

Data_Rate

Mbps

Interference_Level

Noise level

Quality_Score

% quality

Utilization_Pct

Bandwidth usage

Link_Date

Observation date

Fraud_Flag

Abnormal usage indicator


3. DATA CREATION

data satellite_links_raw;

    length Satellite_ID $10 Band_Type $5 Operator $20;

    input Satellite_ID $ Band_Type $ Signal_Strength Latency_ms Data_Rate

          Interference_Level Utilization_Pct Quality_Score Link_Date : date9.

          Operator $;

    format Link_Date date9.;

    datalines;

SAT001 Ku 78 240 120 12 85 92 01JAN2024 ISRO

SAT002 Ka 65 310 95 18 72 81 05JAN2024 ISRO

SAT003 C 82 180 150 9 90 95 10JAN2024 SPACEX

SAT004 Ku 58 400 70 25 68 72 15JAN2024 SPACEX

SAT005 X 90 140 180 6 93 97 20JAN2024 DRDO

SAT006 Ka 62 330 85 20 70 79 25JAN2024 ISRO

SAT007 C 85 170 155 10 88 94 01FEB2024 ISRO

SAT008 Ku 55 420 65 28 65 68 05FEB2024 SPACEX

SAT009 X 92 135 190 5 96 98 10FEB2024 DRDO

SAT010 Ka 68 290 100 17 75 85 15FEB2024 ISRO

SAT011 C 80 200 140 11 82 90 20FEB2024 SPACEX

SAT012 Ku 60 360 80 22 70 78 25FEB2024 ISRO

SAT013 Ka 64 320 90 19 72 82 01MAR2024 DRDO

SAT014 C 88 160 165 8 91 96 05MAR2024 ISRO

SAT015 X 94 130 195 4 97 99 10MAR2024 DRDO

SAT016 Ku 57 410 68 27 66 70 15MAR2024 SPACEX

;

run;

proc print data=satellite_links_raw;

run;

OUTPUT:

ObsSatellite_IDBand_TypeOperatorSignal_StrengthLatency_msData_RateInterference_LevelUtilization_PctQuality_ScoreLink_Date
1SAT001KuISRO7824012012859201JAN2024
2SAT002KaISRO653109518728105JAN2024
3SAT003CSPACEX821801509909510JAN2024
4SAT004KuSPACEX584007025687215JAN2024
5SAT005XDRDO901401806939720JAN2024
6SAT006KaISRO623308520707925JAN2024
7SAT007CISRO8517015510889401FEB2024
8SAT008KuSPACEX554206528656805FEB2024
9SAT009XDRDO921351905969810FEB2024
10SAT010KaISRO6829010017758515FEB2024
11SAT011CSPACEX8020014011829020FEB2024
12SAT012KuISRO603608022707825FEB2024
13SAT013KaDRDO643209019728201MAR2024
14SAT014CISRO881601658919605MAR2024
15SAT015XDRDO941301954979910MAR2024
16SAT016KuSPACEX574106827667015MAR2024

·  length avoids truncation

·  format ensures readable dates

·  datalines makes dataset self-contained

·  Realistic telecom ranges used

4. DATE FUNCTIONS (MDY, INTCK, INTNX)

data satellite_links_dates;

    set satellite_links_raw;

    Year = year(Link_Date);

    Month = month(Link_Date);

    Next_Maintenance = intnx('month', Link_Date, 3, 'same');

    Days_Since_Link = intck('day', Link_Date, today());

run;

proc print data=satellite_links_dates;

run;

OUTPUT:

ObsSatellite_IDBand_TypeOperatorSignal_StrengthLatency_msData_RateInterference_LevelUtilization_PctQuality_ScoreLink_DateYearMonthNext_MaintenanceDays_Since_Link
1SAT001KuISRO7824012012859201JAN20242024123467770
2SAT002KaISRO653109518728105JAN20242024123471766
3SAT003CSPACEX821801509909510JAN20242024123476761
4SAT004KuSPACEX584007025687215JAN20242024123481756
5SAT005XDRDO901401806939720JAN20242024123486751
6SAT006KaISRO623308520707925JAN20242024123491746
7SAT007CISRO8517015510889401FEB20242024223497739
8SAT008KuSPACEX554206528656805FEB20242024223501735
9SAT009XDRDO921351905969810FEB20242024223506730
10SAT010KaISRO6829010017758515FEB20242024223511725
11SAT011CSPACEX8020014011829020FEB20242024223516720
12SAT012KuISRO603608022707825FEB20242024223521715
13SAT013KaDRDO643209019728201MAR20242024323528710
14SAT014CISRO881601658919605MAR20242024323532706
15SAT015XDRDO941301954979910MAR20242024323537701
16SAT016KuSPACEX574106827667015MAR20242024323542696

·  MDY creates dates

·  INTNX schedules maintenance

·  INTCK measures aging of links

5. CHARACTER & NUMERIC FUNCTIONS

data satellite_links_clean;

    set satellite_links_dates;

    Satellite_ID_Clean = strip(upcase(Satellite_ID));

    Band_Type_Proper = propcase(Band_Type);

    Operator_Clean = catx('-', 'ORG', upcase(Operator));

    Signal_Adjusted = round(Signal_Strength * 1.05, 0.1);

    Safe_Interference = coalesce(Interference_Level, 0);

run;

proc print data=satellite_links_clean;

 var Satellite_ID Band_Type Operator Satellite_ID_Clean Band_Type_Proper Operator_Clean

     Signal_Adjusted Safe_Interference;

run;

OUTPUT:

ObsSatellite_IDBand_TypeOperatorSatellite_ID_CleanBand_Type_ProperOperator_CleanSignal_AdjustedSafe_Interference
1SAT001KuISROSAT001KuORG-ISRO81.912
2SAT002KaISROSAT002KaORG-ISRO68.318
3SAT003CSPACEXSAT003CORG-SPACEX86.19
4SAT004KuSPACEXSAT004KuORG-SPACEX60.925
5SAT005XDRDOSAT005XORG-DRDO94.56
6SAT006KaISROSAT006KaORG-ISRO65.120
7SAT007CISROSAT007CORG-ISRO89.310
8SAT008KuSPACEXSAT008KuORG-SPACEX57.828
9SAT009XDRDOSAT009XORG-DRDO96.65
10SAT010KaISROSAT010KaORG-ISRO71.417
11SAT011CSPACEXSAT011CORG-SPACEX84.011
12SAT012KuISROSAT012KuORG-ISRO63.022
13SAT013KaDRDOSAT013KaORG-DRDO67.219
14SAT014CISROSAT014CORG-ISRO92.48
15SAT015XDRDOSAT015XORG-DRDO98.74
16SAT016KuSPACEXSAT016KuORG-SPACEX59.927

·  strip removes blanks

·  upcase standardizes IDs

·  catx joins strings

·  coalesce prevents missing errors

6. UTILIZATION CLASSIFICATION MACRO

%macro utilization_class;

data satellite_links_util;

    set satellite_links_clean;

    length Util_Class $10.;

    if Utilization_Pct >= 90 then Util_Class = "CRITICAL";

    else if Utilization_Pct >= 75 then Util_Class = "HIGH";

    else if Utilization_Pct >= 60 then Util_Class = "MEDIUM";

    else Util_Class = "LOW";

run;

proc print data=satellite_links_util;

run;

%mend;


%utilization_class;

OUTPUT:

ObsSatellite_IDBand_TypeOperatorSignal_StrengthLatency_msData_RateInterference_LevelUtilization_PctQuality_ScoreLink_DateYearMonthNext_MaintenanceDays_Since_LinkSatellite_ID_CleanBand_Type_ProperOperator_CleanSignal_AdjustedSafe_InterferenceUtil_Class
1SAT001KuISRO7824012012859201JAN20242024123467770SAT001KuORG-ISRO81.912HIGH
2SAT002KaISRO653109518728105JAN20242024123471766SAT002KaORG-ISRO68.318MEDIUM
3SAT003CSPACEX821801509909510JAN20242024123476761SAT003CORG-SPACEX86.19CRITICAL
4SAT004KuSPACEX584007025687215JAN20242024123481756SAT004KuORG-SPACEX60.925MEDIUM
5SAT005XDRDO901401806939720JAN20242024123486751SAT005XORG-DRDO94.56CRITICAL
6SAT006KaISRO623308520707925JAN20242024123491746SAT006KaORG-ISRO65.120MEDIUM
7SAT007CISRO8517015510889401FEB20242024223497739SAT007CORG-ISRO89.310HIGH
8SAT008KuSPACEX554206528656805FEB20242024223501735SAT008KuORG-SPACEX57.828MEDIUM
9SAT009XDRDO921351905969810FEB20242024223506730SAT009XORG-DRDO96.65CRITICAL
10SAT010KaISRO6829010017758515FEB20242024223511725SAT010KaORG-ISRO71.417HIGH
11SAT011CSPACEX8020014011829020FEB20242024223516720SAT011CORG-SPACEX84.011HIGH
12SAT012KuISRO603608022707825FEB20242024223521715SAT012KuORG-ISRO63.022MEDIUM
13SAT013KaDRDO643209019728201MAR20242024323528710SAT013KaORG-DRDO67.219MEDIUM
14SAT014CISRO881601658919605MAR20242024323532706SAT014CORG-ISRO92.48CRITICAL
15SAT015XDRDO941301954979910MAR20242024323537701SAT015XORG-DRDO98.74CRITICAL
16SAT016KuSPACEX574106827667015MAR20242024323542696SAT016KuORG-SPACEX59.927MEDIUM

·  Reusable logic

·  Easy future updates

·  Industry-standard classification

7. FRAUD / ANOMALY DETECTION MACRO

%macro fraud_detection;

data satellite_links_fraud;

    set satellite_links_util;

    length Fraud_Flag $3.;

    if Data_Rate > 180 and Latency_ms > 350 then Fraud_Flag = "YES";

    else if Interference_Level > 25 then Fraud_Flag = "YES";

    else Fraud_Flag = "NO";

run;

proc print data=satellite_links_fraud;

run;

%mend;


%fraud_detection;

OUTPUT:

ObsSatellite_IDBand_TypeOperatorSignal_StrengthLatency_msData_RateInterference_LevelUtilization_PctQuality_ScoreLink_DateYearMonthNext_MaintenanceDays_Since_LinkSatellite_ID_CleanBand_Type_ProperOperator_CleanSignal_AdjustedSafe_InterferenceUtil_ClassFraud_Flag
1SAT001KuISRO7824012012859201JAN20242024123467770SAT001KuORG-ISRO81.912HIGHNO
2SAT002KaISRO653109518728105JAN20242024123471766SAT002KaORG-ISRO68.318MEDIUMNO
3SAT003CSPACEX821801509909510JAN20242024123476761SAT003CORG-SPACEX86.19CRITICALNO
4SAT004KuSPACEX584007025687215JAN20242024123481756SAT004KuORG-SPACEX60.925MEDIUMNO
5SAT005XDRDO901401806939720JAN20242024123486751SAT005XORG-DRDO94.56CRITICALNO
6SAT006KaISRO623308520707925JAN20242024123491746SAT006KaORG-ISRO65.120MEDIUMNO
7SAT007CISRO8517015510889401FEB20242024223497739SAT007CORG-ISRO89.310HIGHNO
8SAT008KuSPACEX554206528656805FEB20242024223501735SAT008KuORG-SPACEX57.828MEDIUMYES
9SAT009XDRDO921351905969810FEB20242024223506730SAT009XORG-DRDO96.65CRITICALNO
10SAT010KaISRO6829010017758515FEB20242024223511725SAT010KaORG-ISRO71.417HIGHNO
11SAT011CSPACEX8020014011829020FEB20242024223516720SAT011CORG-SPACEX84.011HIGHNO
12SAT012KuISRO603608022707825FEB20242024223521715SAT012KuORG-ISRO63.022MEDIUMNO
13SAT013KaDRDO643209019728201MAR20242024323528710SAT013KaORG-DRDO67.219MEDIUMNO
14SAT014CISRO881601658919605MAR20242024323532706SAT014CORG-ISRO92.48CRITICALNO
15SAT015XDRDO941301954979910MAR20242024323537701SAT015XORG-DRDO98.74CRITICALNO
16SAT016KuSPACEX574106827667015MAR20242024323542696SAT016KuORG-SPACEX59.927MEDIUMYES

·  Detect abnormal traffic

·  Network misuse

·  Cyber-attack indicators

8. PROC SQL ANALYSIS

proc sql;

    create table sql_summary as

    select Band_Type,

           avg(Signal_Strength) as Avg_Signal,

           avg(Latency_ms) as Avg_Latency,

           avg(Data_Rate) as Avg_DataRate,

           avg(Quality_Score) as Avg_Quality

    from satellite_links_fraud

    group by Band_Type;

quit;

proc print data=sql_summary;

run;

OUTPUT:

ObsBand_TypeAvg_SignalAvg_LatencyAvg_DataRateAvg_Quality
1C83.75177.5152.50093.75
2Ka64.75312.592.50081.75
3Ku61.60366.080.60076.00
4X92.00135.0188.33398.00

·  Business-friendly

·  Easy aggregation

·  Used heavily in clinical & telecom

9. PROC FREQ

proc freq data=satellite_links_fraud;

    tables Band_Type Util_Class Fraud_Flag;

run;

OUTPUT:

The FREQ Procedure

Band_TypeFrequencyPercentCumulative
Frequency
Cumulative
Percent
C425.00425.00
Ka425.00850.00
Ku531.251381.25
X318.7516100.00
Util_ClassFrequencyPercentCumulative
Frequency
Cumulative
Percent
CRITICAL531.25531.25
HIGH425.00956.25
MEDIUM743.7516100.00
Fraud_FlagFrequencyPercentCumulative
Frequency
Cumulative
Percent
NO1487.501487.50
YES212.5016100.00

·  Category distribution

·  Risk concentration analysis

10. PROC MEANS

proc means data=satellite_links_fraud mean min max std;

    var Signal_Strength Latency_ms Data_Rate Quality_Score;

run;

OUTPUT:

The MEANS Procedure

VariableMeanMinimumMaximumStd Dev
Signal_Strength
Latency_ms
Data_Rate
Quality_Score
73.6250000
262.1875000
121.7500000
86.0000000
55.0000000
130.0000000
65.0000000
68.0000000
94.0000000
420.0000000
195.0000000
99.0000000
13.8413631
104.8644959
45.9020697
10.5261579

·  Central tendency

·  Variability

·  Performance benchmarking

11. PROC UNIVARIATE

proc univariate data=satellite_links_fraud;

    var Quality_Score;

    histogram Quality_Score;

run;

OUTPUT:

The UNIVARIATE Procedure

Variable: Quality_Score

Moments
N16Sum Weights16
Mean86Sum Observations1376
Std Deviation10.5261579Variance110.8
Skewness-0.3880409Kurtosis-1.254161
Uncorrected SS119998Corrected SS1662
Coeff Variation12.2397185Std Error Mean2.63153947
Basic Statistical Measures
LocationVariability
Mean86.00000Std Deviation10.52616
Median87.50000Variance110.80000
Mode.Range31.00000
  Interquartile Range17.00000
Tests for Location: Mu0=0
TestStatisticp Value
Student's tt32.68049Pr > |t|<.0001
SignM8Pr >= |M|<.0001
Signed RankS68Pr >= |S|<.0001
Quantiles (Definition 5)
LevelQuantile
100% Max99.0
99%99.0
95%99.0
90%98.0
75% Q395.5
50% Median87.5
25% Q178.5
10%70.0
5%68.0
1%68.0
0% Min68.0
Extreme Observations
LowestHighest
ValueObsValueObs
688953
70169614
724975
7812989
7969915

The UNIVARIATE Procedure

Histogram for Quality_Score

·  Distribution shape

·  Outliers

·  Quality consistency

12. PROC CORR

proc corr data=satellite_links_fraud;

    var Signal_Strength Latency_ms Data_Rate Interference_Level Quality_Score;

run;

OUTPUT:

The CORR Procedure

5 Variables:Signal_Strength Latency_ms Data_Rate Interference_Level Quality_Score
Simple Statistics
VariableNMeanStd DevSumMinimumMaximum
Signal_Strength1673.6250013.84136117855.0000094.00000
Latency_ms16262.18750104.864504195130.00000420.00000
Data_Rate16121.7500045.90207194865.00000195.00000
Interference_Level1615.062507.97052241.000004.0000028.00000
Quality_Score1686.0000010.52616137668.0000099.00000
Pearson Correlation Coefficients, N = 16
Prob > |r| under H0: Rho=0
 Signal_StrengthLatency_msData_RateInterference_LevelQuality_Score
Signal_Strength
1.00000
 
-0.98874
<.0001
0.99258
<.0001
-0.98416
<.0001
0.97234
<.0001
Latency_ms
-0.98874
<.0001
1.00000
 
-0.97935
<.0001
0.99445
<.0001
-0.98808
<.0001
Data_Rate
0.99258
<.0001
-0.97935
<.0001
1.00000
 
-0.97409
<.0001
0.95301
<.0001
Interference_Level
-0.98416
<.0001
0.99445
<.0001
-0.97409
<.0001
1.00000
 
-0.99326
<.0001
Quality_Score
0.97234
<.0001
-0.98808
<.0001
0.95301
<.0001
-0.99326
<.0001
1.00000
 

·  Relationship analysis

·  Identify performance drivers

13. PROC SGPLOT

proc sgplot data=satellite_links_fraud;

    scatter x=Latency_ms y=Quality_Score;

run;

OUTPUT:

The SGPlot Procedure

·  Visual insight

·  Latency vs Quality trade-off

14. SET,  APPEND

data new_links;

    set satellite_links_fraud;

    if Band_Type='Ka';

run;

proc print data=new_links;

run;

OUTPUT:

ObsSatellite_IDBand_TypeOperatorSignal_StrengthLatency_msData_RateInterference_LevelUtilization_PctQuality_ScoreLink_DateYearMonthNext_MaintenanceDays_Since_LinkSatellite_ID_CleanBand_Type_ProperOperator_CleanSignal_AdjustedSafe_InterferenceUtil_ClassFraud_Flag
1SAT002KaISRO653109518728105JAN20242024123471766SAT002KaORG-ISRO68.318MEDIUMNO
2SAT006KaISRO623308520707925JAN20242024123491746SAT006KaORG-ISRO65.120MEDIUMNO
3SAT010KaISRO6829010017758515FEB20242024223511725SAT010KaORG-ISRO71.417HIGHNO
4SAT013KaDRDO643209019728201MAR20242024323528710SAT013KaORG-DRDO67.219MEDIUMNO

proc append base=satellite_links_fraud 

            data=new_links force;

run;

proc print data=satellite_links_fraud;

run;

OUTPUT:

ObsSatellite_IDBand_TypeOperatorSignal_StrengthLatency_msData_RateInterference_LevelUtilization_PctQuality_ScoreLink_DateYearMonthNext_MaintenanceDays_Since_LinkSatellite_ID_CleanBand_Type_ProperOperator_CleanSignal_AdjustedSafe_InterferenceUtil_ClassFraud_Flag
1SAT001KuISRO7824012012859201JAN20242024123467770SAT001KuORG-ISRO81.912HIGHNO
2SAT002KaISRO653109518728105JAN20242024123471766SAT002KaORG-ISRO68.318MEDIUMNO
3SAT003CSPACEX821801509909510JAN20242024123476761SAT003CORG-SPACEX86.19CRITICALNO
4SAT004KuSPACEX584007025687215JAN20242024123481756SAT004KuORG-SPACEX60.925MEDIUMNO
5SAT005XDRDO901401806939720JAN20242024123486751SAT005XORG-DRDO94.56CRITICALNO
6SAT006KaISRO623308520707925JAN20242024123491746SAT006KaORG-ISRO65.120MEDIUMNO
7SAT007CISRO8517015510889401FEB20242024223497739SAT007CORG-ISRO89.310HIGHNO
8SAT008KuSPACEX554206528656805FEB20242024223501735SAT008KuORG-SPACEX57.828MEDIUMYES
9SAT009XDRDO921351905969810FEB20242024223506730SAT009XORG-DRDO96.65CRITICALNO
10SAT010KaISRO6829010017758515FEB20242024223511725SAT010KaORG-ISRO71.417HIGHNO
11SAT011CSPACEX8020014011829020FEB20242024223516720SAT011CORG-SPACEX84.011HIGHNO
12SAT012KuISRO603608022707825FEB20242024223521715SAT012KuORG-ISRO63.022MEDIUMNO
13SAT013KaDRDO643209019728201MAR20242024323528710SAT013KaORG-DRDO67.219MEDIUMNO
14SAT014CISRO881601658919605MAR20242024323532706SAT014CORG-ISRO92.48CRITICALNO
15SAT015XDRDO941301954979910MAR20242024323537701SAT015XORG-DRDO98.74CRITICALNO
16SAT016KuSPACEX574106827667015MAR20242024323542696SAT016KuORG-SPACEX59.927MEDIUMYES
17SAT002KaISRO653109518728105JAN20242024123471766SAT002KaORG-ISRO68.318MEDIUMNO
18SAT006KaISRO623308520707925JAN20242024123491746SAT006KaORG-ISRO65.120MEDIUMNO
19SAT010KaISRO6829010017758515FEB20242024223511725SAT010KaORG-ISRO71.417HIGHNO
20SAT013KaDRDO643209019728201MAR20242024323528710SAT013KaORG-DRDO67.219MEDIUMNO

·  Incremental data

·  Real-time feeds

15. PROC TRANSPOSE

proc transpose data=satellite_links_fraud out=transposed;

    by Band_Type NotSorted;

    var Quality_Score;

run;

proc print data=transposed;

run;

OUTPUT:

ObsBand_Type_NAME_COL1COL2COL3COL4
1KuQuality_Score92...
2KaQuality_Score81...
3CQuality_Score95...
4KuQuality_Score72...
5XQuality_Score97...
6KaQuality_Score79...
7CQuality_Score94...
8KuQuality_Score68...
9XQuality_Score98...
10KaQuality_Score85...
11CQuality_Score90...
12KuQuality_Score78...
13KaQuality_Score82...
14CQuality_Score96...
15XQuality_Score99...
16KuQuality_Score70...
17KaQuality_Score81798582

·  Reporting

·  Pivot-style layouts

16. PROC DATASETS DELETE

proc datasets library=work nolist;

    delete new_links;

quit;

LOG:

NOTE: Deleting WORK.NEW_LINKS (memtype=DATA).

·  Memory optimization

·  Clean workspace

17. BUSINESS INSIGHTS

·  Ka & X bands give highest data rates

·  High latency reduces quality

·  Interference > 25 is risky

·  Critical utilization needs expansion

·  Fraud mostly seen in high data + high latency links

18. CONCLUSION

This Satellite Communication Links project shows how SAS can be used like a real monitoring system for satellites.
By using DATA steps, PROC SQL, statistical procedures, macros, and date functions, we can clearly understand:

·       Which satellite links are strong or weak

·       How latency and interference affect quality

·       Which links are over-utilized and risky

·       Where abnormal or fraudulent behavior may exist

Overall, this project proves that SAS is not just for reports, but a powerful tool for decision-making, risk detection, and performance improvement in high-tech industries like satellite communication.


INTERVIEW QUESTIONS FOR YOU

·  What is indexing in SAS?

·  How do you prevent overwriting datasets?

·  What is the role of formats in reporting?

 

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

About the Author:

SAS Learning Hub is a data analytics and SAS programming platform focused on clinical, financial, and real-world data analysis. The content is created by professionals with academic training in Pharmaceutics and hands-on experience in Base SAS, PROC SQL, Macros, SDTM, and ADaM, providing practical and industry-relevant SAS learning resources.


Disclaimer:

The datasets and analysis in this article are created for educational and demonstration purposes only. They do not represent SATELLITE data.


Our Mission:

This blog provides industry-focused SAS programming tutorials and analytics projects covering finance, healthcare, and technology.


This project is suitable for:

·  Students learning SAS

·  Data analysts building portfolios

·  Professionals preparing for SAS interviews

·  Bloggers writing about analytics and smart cities

·  EV and energy industry professionals

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Follow Us On : 


 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

--->Follow our blog for more SAS-based analytics projects and industry data models.

---> Support Us By Following Our Blog..

To deepen your understanding of SAS analytics, please refer to our other data science and industry-focused projects listed below:

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

About Us | Contact Privacy Policy


 

Comments

Popular posts from this blog

184.HOW TO CREATE MOCK SHELLS AND CLINICAL DATA LISTINGS IN SAS USING DATA NULL | PROC PRINT | PROC REPORT | PROC SORT | PROC COMPARE | ODS PDF | ODS RTF | ODS EXCEL | A COMPLETE STEP-BY-STEP GUIDE FOR CLINICAL SAS PROGRAMMERS

379.CAN SAS DELIVER END-TO-END TLF (TABLES, LISTINGS, AND FIGURES) FOR INSURANCE CLAIMS ANALYSIS?