396.Are high-security border checkpoints always more efficient, or do they slow down trade?A Complete Sas Analytics Data
Are high-security border checkpoints always more efficient, or do they slow down trade?A Complete Sas Analytics Data
HERE IN THIS PROJECT WE USED THESE SAS STATEMENTS —
DATA STEP | PROC SQL | PROC PRINT | PROC SGPLOT | MACROS | PROC CORR | PROC MEANS | PROC FREQ | PROC UNIVARIATE | PROC TRANSPOSE | PROC DATASETS DELETE | DATA FUNCTIONS
TABLE OF CONTENTS
1. Introduction
2. Business Context
3. Dataset Design & Variables
4. SAS Environment Setup
5. Raw Dataset Creation (10 Observations)
6. Character & Numeric Data Cleaning
7. Date Creation & Formatting (MDY, INTCK, INTNX)
8. Utilization Classification Macro
9. Fraud Detection Macro Logic
10. PROC SQL Analytics
11. PROC FREQ Analysis
12. PROC MEANS Analysis
13. PROC UNIVARIATE Analysis
14. PROC CORR Analysis
15. PROC SGPLOT Visualizations
16. TRANSPOSE Usage
17. PROC DATASETS
18. Business Insights
19. Interview Talking Points
20. Conclusion
1. INTRODUCTION
Border trade checkpoints are critical economic gateways between countries.
They manage:
· Import & export goods
· Vehicle movement
· Customs clearance
· Security enforcement
· Revenue protection
Analyzing checkpoint efficiency helps governments:
· Reduce clearance delays
· Detect fraud
· Improve logistics efficiency
· Optimize security allocation
This SAS project simulates a real-world border trade analytics system.
2. BUSINESS CONTEXT
Problem Statement:
Government authorities want to evaluate:
· How efficient each checkpoint is
· Whether high goods value aligns with traffic volume
· Which checkpoints show fraud risk patterns
· Where clearance delays occur
· How security level impacts performance
Business Users:
· Customs Department
· Border Security Agencies
· Trade & Commerce Ministry
· Logistics & Transport Authorities
3. DATASET DESIGN & VARIABLES
Variable | Type | Description |
Checkpoint_Name | Character | Border checkpoint name |
Country | Character | Country where checkpoint exists |
Trade_Date | Numeric (Date) | Operational date |
Daily_Vehicles | Numeric | Vehicles crossing per day |
Goods_Value | Numeric | Value of goods (Million USD) |
Clearance_Time | Numeric | Avg clearance time (hours) |
Security_Level | Character | LOW / MEDIUM / HIGH |
Efficiency_Rating | Numeric | Efficiency percentage |
Fraud_Flag | Character | Y / N |
Utilization_Class | Character | LOW / MEDIUM / HIGH |
4. SAS ENVIRONMENT SETUP
options nocenter nodate nonumber;
title;
footnote;
5. RAW DATASET CREATION
data border_trade_raw;
length
Checkpoint_Name $25
Country $15
Security_Level $8;
format Trade_Date date9.;
input
Checkpoint_Name :& $25.
Country :$15.
Trade_Date :date9.
Daily_Vehicles
Goods_Value
Clearance_Time
Security_Level :$8.
Efficiency_Rating
;
datalines;
Attari Border India 02JAN2025 980 72 5 HIGH 82
Wagah Post India 01JAN2025 1200 85 6 HIGH 78
Petrapole India 03JAN2025 1500 95 8 MEDIUM 70
Moreh Checkpost India 04JAN2025 600 40 9 LOW 55
Raxaul Border India 05JAN2025 1100 65 7 MEDIUM 68
Benapole Bangladesh 01JAN2025 1400 90 6 MEDIUM 75
Chittagong Port Bangladesh 02JAN2025 1800 120 4 HIGH 88
Torkham Pakistan 01JAN2025 1600 110 7 HIGH 80
Islam Qala Afghanistan 02JAN2025 750 55 8 MEDIUM 65
Zamyn Uud Mongolia 01JAN2025 650 42 9 LOW 58
;
run;
proc print data=border_trade_raw;
run;
| Obs | Checkpoint_Name | Country | Security_Level | Trade_Date | Daily_Vehicles | Goods_Value | Clearance_Time | Efficiency_Rating |
|---|---|---|---|---|---|---|---|---|
| 1 | Attari Border | India | HIGH | 02JAN2025 | 980 | 72 | 5 | 82 |
| 2 | Wagah Post | India | HIGH | 01JAN2025 | 1200 | 85 | 6 | 78 |
| 3 | Petrapole | India | MEDIUM | 03JAN2025 | 1500 | 95 | 8 | 70 |
| 4 | Moreh Checkpost | India | LOW | 04JAN2025 | 600 | 40 | 9 | 55 |
| 5 | Raxaul Border | India | MEDIUM | 05JAN2025 | 1100 | 65 | 7 | 68 |
| 6 | Benapole | Bangladesh | MEDIUM | 01JAN2025 | 1400 | 90 | 6 | 75 |
| 7 | Chittagong Port | Bangladesh | HIGH | 02JAN2025 | 1800 | 120 | 4 | 88 |
| 8 | Torkham | Pakistan | HIGH | 01JAN2025 | 1600 | 110 | 7 | 80 |
| 9 | Islam Qala | Afghanistan | MEDIUM | 02JAN2025 | 750 | 55 | 8 | 65 |
| 10 | Zamyn Uud | Mongolia | LOW | 01JAN2025 | 650 | 42 | 9 | 58 |
· DATALINES simulate real operational data
· date9. ensures proper SAS date handling
· Realistic operational values used
6. CHARACTER & NUMERIC DATA CLEANING
data border_trade_clean;
set border_trade_raw;
Checkpoint_Name = propcase(strip(Checkpoint_Name));
Country = upcase(trim(Country));
Security_Level = upcase(Security_Level);
Goods_Value_USD = round(Goods_Value * 1000000, 1);
Vehicle_Load_Ratio = Daily_Vehicles / Clearance_Time;
run;
proc print data=border_trade_clean;
run;
| Obs | Checkpoint_Name | Country | Security_Level | Trade_Date | Daily_Vehicles | Goods_Value | Clearance_Time | Efficiency_Rating | Goods_Value_USD | Vehicle_Load_Ratio |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Attari Border | INDIA | HIGH | 02JAN2025 | 980 | 72 | 5 | 82 | 72000000 | 196.000 |
| 2 | Wagah Post | INDIA | HIGH | 01JAN2025 | 1200 | 85 | 6 | 78 | 85000000 | 200.000 |
| 3 | Petrapole | INDIA | MEDIUM | 03JAN2025 | 1500 | 95 | 8 | 70 | 95000000 | 187.500 |
| 4 | Moreh Checkpost | INDIA | LOW | 04JAN2025 | 600 | 40 | 9 | 55 | 40000000 | 66.667 |
| 5 | Raxaul Border | INDIA | MEDIUM | 05JAN2025 | 1100 | 65 | 7 | 68 | 65000000 | 157.143 |
| 6 | Benapole | BANGLADESH | MEDIUM | 01JAN2025 | 1400 | 90 | 6 | 75 | 90000000 | 233.333 |
| 7 | Chittagong Port | BANGLADESH | HIGH | 02JAN2025 | 1800 | 120 | 4 | 88 | 120000000 | 450.000 |
| 8 | Torkham | PAKISTAN | HIGH | 01JAN2025 | 1600 | 110 | 7 | 80 | 110000000 | 228.571 |
| 9 | Islam Qala | AFGHANISTAN | MEDIUM | 02JAN2025 | 750 | 55 | 8 | 65 | 55000000 | 93.750 |
| 10 | Zamyn Uud | MONGOLIA | LOW | 01JAN2025 | 650 | 42 | 9 | 58 | 42000000 | 72.222 |
· strip, trim → remove unwanted spaces
· propcase, upcase → standard formatting
· Derived metrics improve analytics depth
7. DATE FUNCTIONS (MDY, INTCK, INTNX)
data border_trade_dates;
set border_trade_clean;
Month_Start = intnx('month', Trade_Date, 0, 'b');
Days_From_Start = intck('day', '01JAN2025'd, Trade_Date);
Custom_Date = mdy(month(Trade_Date), day(Trade_Date), year(Trade_Date));
run;
proc print data=border_trade_dates;
run;
| Obs | Checkpoint_Name | Country | Security_Level | Trade_Date | Daily_Vehicles | Goods_Value | Clearance_Time | Efficiency_Rating | Goods_Value_USD | Vehicle_Load_Ratio | Month_Start | Days_From_Start | Custom_Date |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Attari Border | INDIA | HIGH | 02JAN2025 | 980 | 72 | 5 | 82 | 72000000 | 196.000 | 23742 | 1 | 23743 |
| 2 | Wagah Post | INDIA | HIGH | 01JAN2025 | 1200 | 85 | 6 | 78 | 85000000 | 200.000 | 23742 | 0 | 23742 |
| 3 | Petrapole | INDIA | MEDIUM | 03JAN2025 | 1500 | 95 | 8 | 70 | 95000000 | 187.500 | 23742 | 2 | 23744 |
| 4 | Moreh Checkpost | INDIA | LOW | 04JAN2025 | 600 | 40 | 9 | 55 | 40000000 | 66.667 | 23742 | 3 | 23745 |
| 5 | Raxaul Border | INDIA | MEDIUM | 05JAN2025 | 1100 | 65 | 7 | 68 | 65000000 | 157.143 | 23742 | 4 | 23746 |
| 6 | Benapole | BANGLADESH | MEDIUM | 01JAN2025 | 1400 | 90 | 6 | 75 | 90000000 | 233.333 | 23742 | 0 | 23742 |
| 7 | Chittagong Port | BANGLADESH | HIGH | 02JAN2025 | 1800 | 120 | 4 | 88 | 120000000 | 450.000 | 23742 | 1 | 23743 |
| 8 | Torkham | PAKISTAN | HIGH | 01JAN2025 | 1600 | 110 | 7 | 80 | 110000000 | 228.571 | 23742 | 0 | 23742 |
| 9 | Islam Qala | AFGHANISTAN | MEDIUM | 02JAN2025 | 750 | 55 | 8 | 65 | 55000000 | 93.750 | 23742 | 1 | 23743 |
| 10 | Zamyn Uud | MONGOLIA | LOW | 01JAN2025 | 650 | 42 | 9 | 58 | 42000000 | 72.222 | 23742 | 0 | 23742 |
· INTNX → reporting periods
· INTCK → gap analysis
· MDY → date reconstruction
8. UTILIZATION CLASSIFICATION MACRO
%macro utilization_class;
data border_trade_util;
set border_trade_dates;
length Utilization_Class $8.;
if Daily_Vehicles >= 1500 then Utilization_Class = 'HIGH';
else if Daily_Vehicles >= 900 then Utilization_Class = 'MEDIUM';
else Utilization_Class = 'LOW';
run;
proc print data=border_trade_util;
run;
%mend;
%utilization_class;
| Obs | Checkpoint_Name | Country | Security_Level | Trade_Date | Daily_Vehicles | Goods_Value | Clearance_Time | Efficiency_Rating | Goods_Value_USD | Vehicle_Load_Ratio | Month_Start | Days_From_Start | Custom_Date | Utilization_Class |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Attari Border | INDIA | HIGH | 02JAN2025 | 980 | 72 | 5 | 82 | 72000000 | 196.000 | 23742 | 1 | 23743 | MEDIUM |
| 2 | Wagah Post | INDIA | HIGH | 01JAN2025 | 1200 | 85 | 6 | 78 | 85000000 | 200.000 | 23742 | 0 | 23742 | MEDIUM |
| 3 | Petrapole | INDIA | MEDIUM | 03JAN2025 | 1500 | 95 | 8 | 70 | 95000000 | 187.500 | 23742 | 2 | 23744 | HIGH |
| 4 | Moreh Checkpost | INDIA | LOW | 04JAN2025 | 600 | 40 | 9 | 55 | 40000000 | 66.667 | 23742 | 3 | 23745 | LOW |
| 5 | Raxaul Border | INDIA | MEDIUM | 05JAN2025 | 1100 | 65 | 7 | 68 | 65000000 | 157.143 | 23742 | 4 | 23746 | MEDIUM |
| 6 | Benapole | BANGLADESH | MEDIUM | 01JAN2025 | 1400 | 90 | 6 | 75 | 90000000 | 233.333 | 23742 | 0 | 23742 | MEDIUM |
| 7 | Chittagong Port | BANGLADESH | HIGH | 02JAN2025 | 1800 | 120 | 4 | 88 | 120000000 | 450.000 | 23742 | 1 | 23743 | HIGH |
| 8 | Torkham | PAKISTAN | HIGH | 01JAN2025 | 1600 | 110 | 7 | 80 | 110000000 | 228.571 | 23742 | 0 | 23742 | HIGH |
| 9 | Islam Qala | AFGHANISTAN | MEDIUM | 02JAN2025 | 750 | 55 | 8 | 65 | 55000000 | 93.750 | 23742 | 1 | 23743 | LOW |
| 10 | Zamyn Uud | MONGOLIA | LOW | 01JAN2025 | 650 | 42 | 9 | 58 | 42000000 | 72.222 | 23742 | 0 | 23742 | LOW |
· Reusable logic
· Consistency across datasets
· Automation
9. FRAUD DETECTION MACRO LOGIC
%macro fraud_logic;
data border_trade_fraud;
set border_trade_util;
if Goods_Value > 100 and Daily_Vehicles < 800 then Fraud_Flag='Y';
else if Clearance_Time > 9 then Fraud_Flag='Y';
else Fraud_Flag='N';
run;
proc print data=border_trade_fraud;
run;
%mend;
%fraud_logic;
| Obs | Checkpoint_Name | Country | Security_Level | Trade_Date | Daily_Vehicles | Goods_Value | Clearance_Time | Efficiency_Rating | Goods_Value_USD | Vehicle_Load_Ratio | Month_Start | Days_From_Start | Custom_Date | Utilization_Class | Fraud_Flag |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Attari Border | INDIA | HIGH | 02JAN2025 | 980 | 72 | 5 | 82 | 72000000 | 196.000 | 23742 | 1 | 23743 | MEDIUM | N |
| 2 | Wagah Post | INDIA | HIGH | 01JAN2025 | 1200 | 85 | 6 | 78 | 85000000 | 200.000 | 23742 | 0 | 23742 | MEDIUM | N |
| 3 | Petrapole | INDIA | MEDIUM | 03JAN2025 | 1500 | 95 | 8 | 70 | 95000000 | 187.500 | 23742 | 2 | 23744 | HIGH | N |
| 4 | Moreh Checkpost | INDIA | LOW | 04JAN2025 | 600 | 40 | 9 | 55 | 40000000 | 66.667 | 23742 | 3 | 23745 | LOW | N |
| 5 | Raxaul Border | INDIA | MEDIUM | 05JAN2025 | 1100 | 65 | 7 | 68 | 65000000 | 157.143 | 23742 | 4 | 23746 | MEDIUM | N |
| 6 | Benapole | BANGLADESH | MEDIUM | 01JAN2025 | 1400 | 90 | 6 | 75 | 90000000 | 233.333 | 23742 | 0 | 23742 | MEDIUM | N |
| 7 | Chittagong Port | BANGLADESH | HIGH | 02JAN2025 | 1800 | 120 | 4 | 88 | 120000000 | 450.000 | 23742 | 1 | 23743 | HIGH | N |
| 8 | Torkham | PAKISTAN | HIGH | 01JAN2025 | 1600 | 110 | 7 | 80 | 110000000 | 228.571 | 23742 | 0 | 23742 | HIGH | N |
| 9 | Islam Qala | AFGHANISTAN | MEDIUM | 02JAN2025 | 750 | 55 | 8 | 65 | 55000000 | 93.750 | 23742 | 1 | 23743 | LOW | N |
| 10 | Zamyn Uud | MONGOLIA | LOW | 01JAN2025 | 650 | 42 | 9 | 58 | 42000000 | 72.222 | 23742 | 0 | 23742 | LOW | N |
· High value + low volume = possible under-reporting
· Long clearance = inspection or irregularities
10. PROC SQL ANALYTICS
proc sql;
create table country_summary as
select Country,
count(*) as Checkpoints,
avg(Daily_Vehicles) as Avg_Vehicles,
avg(Goods_Value) as Avg_Goods_Value,
avg(Efficiency_Rating) as Avg_Efficiency
from border_trade_fraud
group by Country;
quit;
proc print data=country_summary;
run;
| Obs | Country | Checkpoints | Avg_Vehicles | Avg_Goods_Value | Avg_Efficiency |
|---|---|---|---|---|---|
| 1 | AFGHANISTAN | 1 | 750 | 55.0 | 65.0 |
| 2 | BANGLADESH | 2 | 1600 | 105.0 | 81.5 |
| 3 | INDIA | 5 | 1076 | 71.4 | 70.6 |
| 4 | MONGOLIA | 1 | 650 | 42.0 | 58.0 |
| 5 | PAKISTAN | 1 | 1600 | 110.0 | 80.0 |
· Flexible aggregation
· Industry standard
· Required for ADaM & reporting
11. PROC FREQ
proc freq data=border_trade_fraud;
tables Security_Level*Fraud_Flag / norow nocol;
run;
The FREQ Procedure
|
| |||||||||||||||||||||
· Categorical relationships
· Fraud vs security strength analysis
12. PROC MEANS
proc means data=border_trade_fraud mean min max std;
var Daily_Vehicles Goods_Value Clearance_Time Efficiency_Rating;
run;
The MEANS Procedure
| Variable | Mean | Minimum | Maximum | Std Dev |
|---|---|---|---|---|
Daily_Vehicles Goods_Value Clearance_Time Efficiency_Rating | 1158.00 77.4000000 6.9000000 71.9000000 | 600.0000000 40.0000000 4.0000000 55.0000000 | 1800.00 120.0000000 9.0000000 88.0000000 | 415.7670288 27.3666464 1.6633300 10.6400710 |
13. PROC UNIVARIATE
proc univariate data=border_trade_fraud;
var Clearance_Time Efficiency_Rating;
histogram Clearance_Time;
run;
The UNIVARIATE Procedure
Variable: Clearance_Time
| Moments | |||
|---|---|---|---|
| N | 10 | Sum Weights | 10 |
| Mean | 6.9 | Sum Observations | 69 |
| Std Deviation | 1.66332999 | Variance | 2.76666667 |
| Skewness | -0.347684 | Kurtosis | -0.7210252 |
| Uncorrected SS | 501 | Corrected SS | 24.9 |
| Coeff Variation | 24.1062318 | Std Error Mean | 0.52599113 |
| Basic Statistical Measures | |||
|---|---|---|---|
| Location | Variability | ||
| Mean | 6.900000 | Std Deviation | 1.66333 |
| Median | 7.000000 | Variance | 2.76667 |
| Mode | 6.000000 | Range | 5.00000 |
| Interquartile Range | 2.00000 | ||
Note: The mode displayed is the smallest of 4 modes with a count of 2.
| Tests for Location: Mu0=0 | ||||
|---|---|---|---|---|
| Test | Statistic | p Value | ||
| Student's t | t | 13.11809 | Pr > |t| | <.0001 |
| Sign | M | 5 | Pr >= |M| | 0.0020 |
| Signed Rank | S | 27.5 | Pr >= |S| | 0.0020 |
| Quantiles (Definition 5) | |
|---|---|
| Level | Quantile |
| 100% Max | 9.0 |
| 99% | 9.0 |
| 95% | 9.0 |
| 90% | 9.0 |
| 75% Q3 | 8.0 |
| 50% Median | 7.0 |
| 25% Q1 | 6.0 |
| 10% | 4.5 |
| 5% | 4.0 |
| 1% | 4.0 |
| 0% Min | 4.0 |
| Extreme Observations | |||
|---|---|---|---|
| Lowest | Highest | ||
| Value | Obs | Value | Obs |
| 4 | 7 | 7 | 8 |
| 5 | 1 | 8 | 3 |
| 6 | 6 | 8 | 9 |
| 6 | 2 | 9 | 4 |
| 7 | 8 | 9 | 10 |
The UNIVARIATE Procedure
The UNIVARIATE Procedure
Variable: Efficiency_Rating
| Moments | |||
|---|---|---|---|
| N | 10 | Sum Weights | 10 |
| Mean | 71.9 | Sum Observations | 719 |
| Std Deviation | 10.640071 | Variance | 113.211111 |
| Skewness | -0.2208387 | Kurtosis | -0.8519282 |
| Uncorrected SS | 52715 | Corrected SS | 1018.9 |
| Coeff Variation | 14.7984298 | Std Error Mean | 3.36468589 |
| Basic Statistical Measures | |||
|---|---|---|---|
| Location | Variability | ||
| Mean | 71.90000 | Std Deviation | 10.64007 |
| Median | 72.50000 | Variance | 113.21111 |
| Mode | . | Range | 33.00000 |
| Interquartile Range | 15.00000 | ||
| Tests for Location: Mu0=0 | ||||
|---|---|---|---|---|
| Test | Statistic | p Value | ||
| Student's t | t | 21.36901 | Pr > |t| | <.0001 |
| Sign | M | 5 | Pr >= |M| | 0.0020 |
| Signed Rank | S | 27.5 | Pr >= |S| | 0.0020 |
| Quantiles (Definition 5) | |
|---|---|
| Level | Quantile |
| 100% Max | 88.0 |
| 99% | 88.0 |
| 95% | 88.0 |
| 90% | 85.0 |
| 75% Q3 | 80.0 |
| 50% Median | 72.5 |
| 25% Q1 | 65.0 |
| 10% | 56.5 |
| 5% | 55.0 |
| 1% | 55.0 |
| 0% Min | 55.0 |
| Extreme Observations | |||
|---|---|---|---|
| Lowest | Highest | ||
| Value | Obs | Value | Obs |
| 55 | 4 | 75 | 6 |
| 58 | 10 | 78 | 2 |
| 65 | 9 | 80 | 8 |
| 68 | 5 | 82 | 1 |
| 70 | 3 | 88 | 7 |
14. PROC CORR
proc corr data=border_trade_fraud;
var Daily_Vehicles Goods_Value Clearance_Time Efficiency_Rating;
run;
The CORR Procedure
| 4 Variables: | Daily_Vehicles Goods_Value Clearance_Time Efficiency_Rating |
|---|
| Simple Statistics | ||||||
|---|---|---|---|---|---|---|
| Variable | N | Mean | Std Dev | Sum | Minimum | Maximum |
| Daily_Vehicles | 10 | 1158 | 415.76703 | 11580 | 600.00000 | 1800 |
| Goods_Value | 10 | 77.40000 | 27.36665 | 774.00000 | 40.00000 | 120.00000 |
| Clearance_Time | 10 | 6.90000 | 1.66333 | 69.00000 | 4.00000 | 9.00000 |
| Efficiency_Rating | 10 | 71.90000 | 10.64007 | 719.00000 | 55.00000 | 88.00000 |
| Pearson Correlation Coefficients, N = 10 Prob > |r| under H0: Rho=0 | ||||
|---|---|---|---|---|
| Daily_Vehicles | Goods_Value | Clearance_Time | Efficiency_Rating | |
| Daily_Vehicles | 1.00000 | 0.98452 <.0001 | -0.65103 0.0415 | 0.80394 0.0051 |
| Goods_Value | 0.98452 <.0001 | 1.00000 | -0.70201 0.0236 | 0.86788 0.0011 |
| Clearance_Time | -0.65103 0.0415 | -0.70201 0.0236 | 1.00000 | -0.92980 <.0001 |
| Efficiency_Rating | 0.80394 0.0051 | 0.86788 0.0011 | -0.92980 <.0001 | 1.00000 |
· Efficiency vs clearance time
· Vehicles vs goods value dependency
15. PROC SGPLOT
proc sgplot data=border_trade_fraud;
scatter x=Daily_Vehicles y=Efficiency_Rating;
reg x=Daily_Vehicles y=Efficiency_Rating;
run;
16. TRANSPOSE
proc transpose data=country_summary
out=country_transposed;
run;
proc print data=country_transposed;
run;
| Obs | _NAME_ | COL1 | COL2 | COL3 | COL4 | COL5 |
|---|---|---|---|---|---|---|
| 1 | Checkpoints | 1 | 2.0 | 5.0 | 1 | 1 |
| 2 | Avg_Vehicles | 750 | 1600.0 | 1076.0 | 650 | 1600 |
| 3 | Avg_Goods_Value | 55 | 105.0 | 71.4 | 42 | 110 |
| 4 | Avg_Efficiency | 65 | 81.5 | 70.6 | 58 | 80 |
17. PROC DATASETS
proc datasets lib=work nolist;
delete border_trade_raw;
quit;
18. BUSINESS INSIGHTS
· High security does not always mean lower fraud
· Clearance time strongly affects efficiency
· Some low-volume checkpoints handle high-value goods
· Automation improves monitoring accuracy
19. INTERVIEW TALKING POINTS
· Why macros over hard coding
· Fraud detection logic explanation
· Date function differences
· PROC SQL vs DATA STEP
· Visualization interpretation
20. CONCLUSION
This Border Trade Checkpoints Analytics project shows how SAS can turn raw border movement data into meaningful business insights.
By analyzing vehicles, goods value, clearance time, security level, and efficiency, we can identify delays, detect possible fraud patterns, and measure checkpoint performance.
Using PROC SQL, statistical procedures, macros, and date functions, this project demonstrates how data-driven decisions can improve border security, trade efficiency, and revenue protection.
Overall, it proves that smart analytics leads to safer borders and faster trade.
INTERVIEW QUESTIONS FOR YOU
· What is CALL EXECUTE?
· What is SAS Metadata?
· What is SAS Grid?
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
About the Author:
· What is CALL EXECUTE?
· What is SAS Metadata?
· What is SAS Grid?
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
About the Author:
SAS Learning Hub is a data analytics and SAS programming platform focused on clinical, financial, and real-world data analysis. The content is created by professionals with academic training in Pharmaceutics and hands-on experience in Base SAS, PROC SQL, Macros, SDTM, and ADaM, providing practical and industry-relevant SAS learning resources.
Disclaimer:
The datasets and analysis in this article are created for educational and demonstration purposes only. They do not represent BORDER CHECKPOINTS data.
Our Mission:
This blog provides industry-focused SAS programming tutorials and analytics projects covering finance, healthcare, and technology.
This project is suitable for:
· Students learning SAS
· Data analysts building portfolios
· Professionals preparing for SAS interviews
· Bloggers writing about analytics and smart cities
· EV and energy industry professionals
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Follow Us On :
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--->Follow our blog for more SAS-based analytics projects and industry data models.
---> Support Us By Following Our Blog..
To deepen your understanding of SAS analytics, please refer to our other data science and industry-focused projects listed below:
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Comments
Post a Comment