Sunday, 16 November 2025

311.MOBILE PAYMENT APPLICATIONS DATASET ANALYSIS USING DATA STEP | PROC PRINT | PROC SORT | PROC MEANS | PROC FREQ | PROC FORMAT | PROC SQL | SAS MACRO

MOBILE PAYMENT APPLICATIONS DATASET ANALYSIS USING DATA STEP | PROC PRINT | PROC SORT | PROC MEANS | PROC FREQ | PROC FORMAT | PROC SQL | SAS MACRO

options nocenter validvarname=any;

1. CREATING MOBILE PAYMENTS DATASET USING DATA STEP

data work.mobile_payments;

    infile datalines dlm=',' dsd truncover;

    length App_Name $20 Country $15 Security_Level $10;

    input App_Name $

          Country $

          Users_Millions

          Transactions_Per_Day

          Security_Level $

          Avg_Transaction_Value;

datalines;

GooglePay,India,120,80,High,18.5

PhonePe,India,130,92,High,17.4

Paytm,India,90,65,Medium,10.2

AmazonPay,India,55,28,High,22.1

BHIM,India,25,12,High,14.5

PayPal,USA,420,35,High,45.0

Venmo,USA,90,18,Medium,32.5

CashApp,USA,70,22,Medium,28.3

Alipay,China,900,320,High,55.8

WeChatPay,China,850,310,High,48.9

GrabPay,Singapore,30,10,Medium,19.0

M-Pesa,Kenya,50,22,High,6.5

;

run;

proc print data=work.mobile_payments;

    title "RAW DATASET: MOBILE PAYMENT APPLICATIONS";

run;

OUTPUT:

RAW DATASET: MOBILE PAYMENT APPLICATIONS

ObsApp_NameCountrySecurity_LevelUsers_MillionsTransactions_Per_DayAvg_Transaction_Value
1GooglePayIndiaHigh1208018.5
2PhonePeIndiaHigh1309217.4
3PaytmIndiaMedium906510.2
4AmazonPayIndiaHigh552822.1
5BHIMIndiaHigh251214.5
6PayPalUSAHigh4203545.0
7VenmoUSAMedium901832.5
8CashAppUSAMedium702228.3
9AlipayChinaHigh90032055.8
10WeChatPayChinaHigh85031048.9
11GrabPaySingaporeMedium301019.0
12M-PesaKenyaHigh50226.5

2. PROC SORT – SORT APPS BY USERS

proc sort data=work.mobile_payments out=work.sorted_apps;

    by descending Users_Millions;

run;

proc print data=work.sorted_apps;

    title "APPS SORTED BY NUMBER OF USERS";

run;

OUTPUT:

APPS SORTED BY NUMBER OF USERS

ObsApp_NameCountrySecurity_LevelUsers_MillionsTransactions_Per_DayAvg_Transaction_Value
1AlipayChinaHigh90032055.8
2WeChatPayChinaHigh85031048.9
3PayPalUSAHigh4203545.0
4PhonePeIndiaHigh1309217.4
5GooglePayIndiaHigh1208018.5
6PaytmIndiaMedium906510.2
7VenmoUSAMedium901832.5
8CashAppUSAMedium702228.3
9AmazonPayIndiaHigh552822.1
10M-PesaKenyaHigh50226.5
11GrabPaySingaporeMedium301019.0
12BHIMIndiaHigh251214.5

3. PROC MEANS – STATISTICAL ANALYSIS

proc means data=work.mobile_payments mean min max stddev;

    var Users_Millions Transactions_Per_Day Avg_Transaction_Value;

    title "STATISTICAL SUMMARY OF MOBILE PAYMENT APPS";

run;

OUTPUT:

STATISTICAL SUMMARY OF MOBILE PAYMENT APPS

The MEANS Procedure

VariableMeanMinimumMaximumStd Dev
Users_Millions
Transactions_Per_Day
Avg_Transaction_Value
235.8333333
84.5000000
26.5583333
25.0000000
10.0000000
6.5000000
900.0000000
320.0000000
55.8000000
316.3630921
110.9672351
15.8796873

4. PROC FREQ – FREQUENCY OF SECURITY LEVELS

proc freq data=work.mobile_payments;

    tables Security_Level;

    title "FREQUENCY OF SECURITY LEVELS ACROSS APPS";

run;

OUTPUT:

FREQUENCY OF SECURITY LEVELS ACROSS APPS

The FREQ Procedure

Security_LevelFrequencyPercentCumulative
Frequency
Cumulative
Percent
High866.67866.67
Medium433.3312100.00

5. PROC FORMAT – CUSTOM FORMATTING FOR SECURITY LEVEL

proc format;

    value $secfmt

        'High'   = 'HIGHLY SECURE'

        'Medium' = 'MODERATELY SECURE'

        'Low'    = 'LOW SECURITY';

run;

LOG:

NOTE: Format $SECFMT has been output.

proc print data=work.mobile_payments;

    format Security_Level $secfmt.;

    title "MOBILE APPS WITH SECURITY LEVEL FORMAT APPLIED";

run;

OUTPUT:

MOBILE APPS WITH SECURITY LEVEL FORMAT APPLIED

ObsApp_NameCountrySecurity_LevelUsers_MillionsTransactions_Per_DayAvg_Transaction_Value
1GooglePayIndiaHIGHLY SECURE1208018.5
2PhonePeIndiaHIGHLY SECURE1309217.4
3PaytmIndiaMODERATELY SECURE906510.2
4AmazonPayIndiaHIGHLY SECURE552822.1
5BHIMIndiaHIGHLY SECURE251214.5
6PayPalUSAHIGHLY SECURE4203545.0
7VenmoUSAMODERATELY SECURE901832.5
8CashAppUSAMODERATELY SECURE702228.3
9AlipayChinaHIGHLY SECURE90032055.8
10WeChatPayChinaHIGHLY SECURE85031048.9
11GrabPaySingaporeMODERATELY SECURE301019.0
12M-PesaKenyaHIGHLY SECURE50226.5

6. PROC SQL – CALCULATE TOTAL USERS AND AVG TRANSACTION VALUE

proc sql;

    create table work.summary_sql as

    select 

        Country,

        count(*) as Total_Apps,

        sum(Users_Millions) as Total_Users_M,

        avg(Avg_Transaction_Value) as Avg_Txn_Value

    from work.mobile_payments

    group by Country;

quit;


proc print data=work.summary_sql;

    title "COUNTRY-WISE SUMMARY FROM PROC SQL";

run;

OUTPUT:

COUNTRY-WISE SUMMARY FROM PROC SQL

ObsCountryTotal_AppsTotal_Users_MAvg_Txn_Value
1China2175052.3500
2India542016.5400
3Kenya1506.5000
4Singapore13019.0000
5USA358035.2667

7. MACRO – CALCULATE AVERAGE USERS PER SECURITY LEVEL

%macro security_avg(level);

    proc sql;

        select 

            "&level" as Security_Level,

            avg(Users_Millions) as Avg_Users

        from work.mobile_payments

        where Security_Level = "&level";

    quit;

%mend security_avg;


%security_avg(High);

OUTPUT:

Security_LevelAvg_Users
High318.75

%security_avg(Medium);

OUTPUT:

Security_LevelAvg_Users
Medium70

%security_avg(Low);  /* No app with Low, returns missing */

OUTPUT:

Security_LevelAvg_Users
Low.



To Visit My Previous Different Types Of Oils Dataset:Click Here
To Visit My Previous Different Types Of Series 2025 Dataset:Click Here
To Visit My Previous Analyzing Yoga Asanas Worldwide Dataset:Click Here
To Visit My Previous Analyzing Indian Languages Dataset:Click Here  



Follow Us On : 


 


--- FOLLOW OUR BLOG FOR MORE INFORMATION.

--->PLEASE DO COMMENTS AND SHARE OUR BLOG.



No comments:

Post a Comment