401.How Efficient Are Global Data Centers? A Complete SAS Analytics Study

How Efficient Are Global Data Centers? A Complete SAS Analytics Study

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

HERE IN THIS PROJECT WE USED THESE SAS STATEMENTS —
DATA STEP | PROC SQL |  PROC PRINT | PROC SGPLOT | MACROS | PROC CORR | PROC MEANS | PROC FREQ | PROC UNIVARIATE | APPEND PROC TRANSPOSE | PROC DATASETS DELETE | DATA FUNCTIONS

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1. INTRODUCTION

Modern data centers are the backbone of cloud computing, AI, banking, healthcare, and government systems.
They consume massive power, require efficient cooling, and must ensure zero downtime.

This project simulates global data center operational data and demonstrates how a SAS programmer analyzes efficiency, sustainability, risk, and anomalies using:

·       Base SAS

·       PROC SQL

·       Statistical procedures

·       Macros

·       Date intelligence

·       Data quality & fraud detection logic

2. BUSINESS CONTEXT

Why this analysis matters:

·       High Power Usage Effectiveness (PUE) → Increased operational cost

·       High Downtime → SLA penalties & revenue loss

·       Low Sustainability Score → Regulatory & ESG risks

·       Abnormal metrics → Possible data manipulation or reporting fraud

Business questions answered:

·       Which data centers are inefficient?

·       Which locations show abnormal behavior?

·       Are sustainability scores aligned with operational metrics?

·       Can we auto-classify risk and utilization?

3. TABLE OF CONTENTS

1.     Data Creation

2.     Standardization & Formatting

3.     Derived Metrics

4.     Macro-Driven Classification

5.     Statistical Analysis

6.     Fraud Detection Logic

7.     Correlation Analysis

8.     Visualization

9.     Advanced Data Handling (Append,  Transpose)

10.  Cleanup & Optimization

11.  Conclusion

4. DATASET CREATION (RAW DATA)

data datacenter_raw;

    input Center_ID Center_Name $ Country:$12. Power_Usage_PUE Server_Count Cooling_Efficiency

          Downtime_Hours Sustainability_Score Install_Date : date9.;

    format Install_Date date9.;

datalines;

1 alpha_dc usa 1.4 12000 82 5 78 15JAN2015

2 beta_dc india 1.8 9500 70 18 65 22MAR2016

3 gamma_dc germany 1.3 14000 88 2 85 10JUN2014

4 delta_dc uk 1.6 11000 75 10 72 01DEC2017

5 epsilon_dc japan 1.2 16000 92 1 90 09SEP2013

6 zeta_dc india 2.1 8000 60 30 50 12FEB2018

7 eta_dc usa 1.5 10000 78 7 74 19AUG2016

8 theta_dc canada 1.4 10500 80 6 77 25NOV2015

9 iota_dc australia 1.7 9800 73 12 70 11APR2017

10 kappa_dc singapore 1.3 15000 90 3 88 06JUL2014

11 lambda_dc france 1.6 10800 76 9 73 18OCT2016

12 mu_dc india 2.3 7000 55 40 45 29JAN2019

13 nu_dc netherlands 1.2 15500 93 2 91 03MAY2013

14 xi_dc brazil 1.9 9000 68 22 60 14DEC2018

15 omicron_dc uae 1.5 11500 79 8 75 21JUN2016

;

run;

proc print data=datacenter_raw;

run;

OUTPUT:

ObsCenter_IDCenter_NameCountryPower_Usage_PUEServer_CountCooling_EfficiencyDowntime_HoursSustainability_ScoreInstall_Date
11alpha_dcusa1.4120008257815JAN2015
22beta_dcindia1.8950070186522MAR2016
33gamma_dcgermany1.3140008828510JUN2014
44delta_dcuk1.61100075107201DEC2017
55epsilon_japan1.2160009219009SEP2013
66zeta_dcindia2.1800060305012FEB2018
77eta_dcusa1.5100007877419AUG2016
88theta_dccanada1.4105008067725NOV2015
99iota_dcaustralia1.7980073127011APR2017
1010kappa_dcsingapore1.3150009038806JUL2014
1111lambda_dfrance1.6108007697318OCT2016
1212mu_dcindia2.3700055404529JAN2019
1313nu_dcnetherlands1.2155009329103MAY2013
1414xi_dcbrazil1.9900068226014DEC2018
1515omicron_uae1.5115007987521JUN2016

·  DATA step gives full control over variable types

·  Realistic multi-country, multi-year data

·  Includes both numeric & character variables

·  Dates allow INTCK / INTNX analysis

5. CHARACTER STANDARDIZATION & CLEANUP

data datacenter_clean;

    set datacenter_raw;

    Center_Name = propcase(strip(Center_Name));

    Country = upcase(strip(Country));

    Center_Code = catx('_', Country, Center_ID);

run;

proc print data=datacenter_clean;

run;

OUTPUT:

ObsCenter_IDCenter_NameCountryPower_Usage_PUEServer_CountCooling_EfficiencyDowntime_HoursSustainability_ScoreInstall_DateCenter_Code
11Alpha_dcUSA1.4120008257815JAN2015USA_1
22Beta_dcINDIA1.8950070186522MAR2016INDIA_2
33Gamma_dcGERMANY1.3140008828510JUN2014GERMANY_3
44Delta_dcUK1.61100075107201DEC2017UK_4
55Epsilon_JAPAN1.2160009219009SEP2013JAPAN_5
66Zeta_dcINDIA2.1800060305012FEB2018INDIA_6
77Eta_dcUSA1.5100007877419AUG2016USA_7
88Theta_dcCANADA1.4105008067725NOV2015CANADA_8
99Iota_dcAUSTRALIA1.7980073127011APR2017AUSTRALIA_9
1010Kappa_dcSINGAPORE1.3150009038806JUL2014SINGAPORE_10
1111Lambda_dFRANCE1.6108007697318OCT2016FRANCE_11
1212Mu_dcINDIA2.3700055404529JAN2019INDIA_12
1313Nu_dcNETHERLANDS1.2155009329103MAY2013NETHERLANDS_13
1414Xi_dcBRAZIL1.9900068226014DEC2018BRAZIL_14
1515Omicron_UAE1.5115007987521JUN2016UAE_15

Function

Purpose

STRIP

Removes leading/trailing spaces

PROPCASE

Standard naming

UPCASE

Country consistency

CATX

Safe concatenation with delimiter

6. DATE DERIVATIONS (MDY, INTCK, INTNX)

data datacenter_dates;

    set datacenter_clean;

    Current_Date = today();

    Years_Operational = intck('year', Install_Date, Current_Date);

    Next_Maintenance = intnx('month', Install_Date, 60, 'same');

    format Current_Date Next_Maintenance date9.;

run;

proc print data=datacenter_dates;

run;

OUTPUT:

ObsCenter_IDCenter_NameCountryPower_Usage_PUEServer_CountCooling_EfficiencyDowntime_HoursSustainability_ScoreInstall_DateCenter_CodeCurrent_DateYears_OperationalNext_Maintenance
11Alpha_dcUSA1.4120008257815JAN2015USA_115FEB20261115JAN2020
22Beta_dcINDIA1.8950070186522MAR2016INDIA_215FEB20261022MAR2021
33Gamma_dcGERMANY1.3140008828510JUN2014GERMANY_315FEB20261210JUN2019
44Delta_dcUK1.61100075107201DEC2017UK_415FEB2026901DEC2022
55Epsilon_JAPAN1.2160009219009SEP2013JAPAN_515FEB20261309SEP2018
66Zeta_dcINDIA2.1800060305012FEB2018INDIA_615FEB2026812FEB2023
77Eta_dcUSA1.5100007877419AUG2016USA_715FEB20261019AUG2021
88Theta_dcCANADA1.4105008067725NOV2015CANADA_815FEB20261125NOV2020
99Iota_dcAUSTRALIA1.7980073127011APR2017AUSTRALIA_915FEB2026911APR2022
1010Kappa_dcSINGAPORE1.3150009038806JUL2014SINGAPORE_1015FEB20261206JUL2019
1111Lambda_dFRANCE1.6108007697318OCT2016FRANCE_1115FEB20261018OCT2021
1212Mu_dcINDIA2.3700055404529JAN2019INDIA_1215FEB2026729JAN2024
1313Nu_dcNETHERLANDS1.2155009329103MAY2013NETHERLANDS_1315FEB20261303MAY2018
1414Xi_dcBRAZIL1.9900068226014DEC2018BRAZIL_1415FEB2026814DEC2023
1515Omicron_UAE1.5115007987521JUN2016UAE_1515FEB20261021JUN2021

·  Operational age impacts maintenance cost

·  Predictive scheduling

·  Time-based risk modelling

7. UTILIZATION & RISK CLASSIFICATION (MACRO)

%macro classify;

data datacenter_classified;

    set datacenter_dates;

    length Utilization $12.;

    if Server_Count >= 14000 then Utilization = 'HIGH';

    else if Server_Count >= 10000 then Utilization = 'MEDIUM';

    else Utilization = 'LOW';

    length Risk_Flag $12.;

    if Downtime_Hours > 25 or Power_Usage_PUE > 2 then Risk_Flag = 'HIGH_RISK';

    else Risk_Flag = 'NORMAL';

run;

proc print data=datacenter_classified;

run;

%mend;


%classify;

OUTPUT:

ObsCenter_IDCenter_NameCountryPower_Usage_PUEServer_CountCooling_EfficiencyDowntime_HoursSustainability_ScoreInstall_DateCenter_CodeCurrent_DateYears_OperationalNext_MaintenanceUtilizationRisk_Flag
11Alpha_dcUSA1.4120008257815JAN2015USA_115FEB20261115JAN2020MEDIUMNORMAL
22Beta_dcINDIA1.8950070186522MAR2016INDIA_215FEB20261022MAR2021LOWNORMAL
33Gamma_dcGERMANY1.3140008828510JUN2014GERMANY_315FEB20261210JUN2019HIGHNORMAL
44Delta_dcUK1.61100075107201DEC2017UK_415FEB2026901DEC2022MEDIUMNORMAL
55Epsilon_JAPAN1.2160009219009SEP2013JAPAN_515FEB20261309SEP2018HIGHNORMAL
66Zeta_dcINDIA2.1800060305012FEB2018INDIA_615FEB2026812FEB2023LOWHIGH_RISK
77Eta_dcUSA1.5100007877419AUG2016USA_715FEB20261019AUG2021MEDIUMNORMAL
88Theta_dcCANADA1.4105008067725NOV2015CANADA_815FEB20261125NOV2020MEDIUMNORMAL
99Iota_dcAUSTRALIA1.7980073127011APR2017AUSTRALIA_915FEB2026911APR2022LOWNORMAL
1010Kappa_dcSINGAPORE1.3150009038806JUL2014SINGAPORE_1015FEB20261206JUL2019HIGHNORMAL
1111Lambda_dFRANCE1.6108007697318OCT2016FRANCE_1115FEB20261018OCT2021MEDIUMNORMAL
1212Mu_dcINDIA2.3700055404529JAN2019INDIA_1215FEB2026729JAN2024LOWHIGH_RISK
1313Nu_dcNETHERLANDS1.2155009329103MAY2013NETHERLANDS_1315FEB20261303MAY2018HIGHNORMAL
1414Xi_dcBRAZIL1.9900068226014DEC2018BRAZIL_1415FEB2026814DEC2023LOWNORMAL
1515Omicron_UAE1.5115007987521JUN2016UAE_1515FEB20261021JUN2021MEDIUMNORMAL

Why macros?

  • Reusable logic
  • Standard enterprise practice
  • Interview favorite topic

8. FRAUD / ANOMALY DETECTION LOGIC

data fraud_check;

    set datacenter_classified;

    length Fraud_Flag $12.;

    if Sustainability_Score > 85 and Cooling_Efficiency < 70

                then Fraud_Flag = 'SUSPECT';

    else Fraud_Flag = 'CLEAR';

run;

proc print data=fraud_check;

run;

OUTPUT:

ObsCenter_IDCenter_NameCountryPower_Usage_PUEServer_CountCooling_EfficiencyDowntime_HoursSustainability_ScoreInstall_DateCenter_CodeCurrent_DateYears_OperationalNext_MaintenanceUtilizationRisk_FlagFraud_Flag
11Alpha_dcUSA1.4120008257815JAN2015USA_115FEB20261115JAN2020MEDIUMNORMALCLEAR
22Beta_dcINDIA1.8950070186522MAR2016INDIA_215FEB20261022MAR2021LOWNORMALCLEAR
33Gamma_dcGERMANY1.3140008828510JUN2014GERMANY_315FEB20261210JUN2019HIGHNORMALCLEAR
44Delta_dcUK1.61100075107201DEC2017UK_415FEB2026901DEC2022MEDIUMNORMALCLEAR
55Epsilon_JAPAN1.2160009219009SEP2013JAPAN_515FEB20261309SEP2018HIGHNORMALCLEAR
66Zeta_dcINDIA2.1800060305012FEB2018INDIA_615FEB2026812FEB2023LOWHIGH_RISKCLEAR
77Eta_dcUSA1.5100007877419AUG2016USA_715FEB20261019AUG2021MEDIUMNORMALCLEAR
88Theta_dcCANADA1.4105008067725NOV2015CANADA_815FEB20261125NOV2020MEDIUMNORMALCLEAR
99Iota_dcAUSTRALIA1.7980073127011APR2017AUSTRALIA_915FEB2026911APR2022LOWNORMALCLEAR
1010Kappa_dcSINGAPORE1.3150009038806JUL2014SINGAPORE_1015FEB20261206JUL2019HIGHNORMALCLEAR
1111Lambda_dFRANCE1.6108007697318OCT2016FRANCE_1115FEB20261018OCT2021MEDIUMNORMALCLEAR
1212Mu_dcINDIA2.3700055404529JAN2019INDIA_1215FEB2026729JAN2024LOWHIGH_RISKCLEAR
1313Nu_dcNETHERLANDS1.2155009329103MAY2013NETHERLANDS_1315FEB20261303MAY2018HIGHNORMALCLEAR
1414Xi_dcBRAZIL1.9900068226014DEC2018BRAZIL_1415FEB2026814DEC2023LOWNORMALCLEAR
1515Omicron_UAE1.5115007987521JUN2016UAE_1515FEB20261021JUN2021MEDIUMNORMALCLEAR

High sustainability with poor cooling → possible manipulated ESG reporting

9. STATISTICAL ANALYSIS

PROC MEANS

proc means data=fraud_check mean min max;

    var Power_Usage_PUE Downtime_Hours Sustainability_Score;

run;

OUTPUT:

The MEANS Procedure

VariableMeanMinimumMaximum
Power_Usage_PUE
Downtime_Hours
Sustainability_Score
1.5866667
11.6666667
72.8666667
1.2000000
1.0000000
45.0000000
2.3000000
40.0000000
91.0000000

PROC UNIVARIATE

proc univariate data=fraud_check;

    var Power_Usage_PUE;

run;

OUTPUT:

The UNIVARIATE Procedure

Variable: Power_Usage_PUE

Moments
N15Sum Weights15
Mean1.58666667Sum Observations23.8
Std Deviation0.32484429Variance0.10552381
Skewness0.87308189Kurtosis0.18800433
Uncorrected SS39.24Corrected SS1.47733333
Coeff Variation20.4733793Std Error Mean0.08387443
Basic Statistical Measures
LocationVariability
Mean1.586667Std Deviation0.32484
Median1.500000Variance0.10552
Mode1.200000Range1.10000
  Interquartile Range0.50000

Note: The mode displayed is the smallest of 5 modes with a count of 2.

Tests for Location: Mu0=0
TestStatisticp Value
Student's tt18.91717Pr > |t|<.0001
SignM7.5Pr >= |M|<.0001
Signed RankS60Pr >= |S|<.0001
Quantiles (Definition 5)
LevelQuantile
100% Max2.3
99%2.3
95%2.3
90%2.1
75% Q31.8
50% Median1.5
25% Q11.3
10%1.2
5%1.2
1%1.2
0% Min1.2
Extreme Observations
LowestHighest
ValueObsValueObs
1.2131.79
1.251.82
1.3101.914
1.332.16
1.482.312

10. FREQUENCY ANALYSIS

proc freq data=fraud_check;

    tables Country Utilization Risk_Flag Fraud_Flag;

run;

OUTPUT:

The FREQ Procedure

CountryFrequencyPercentCumulative
Frequency
Cumulative
Percent
AUSTRALIA16.6716.67
BRAZIL16.67213.33
CANADA16.67320.00
FRANCE16.67426.67
GERMANY16.67533.33
INDIA320.00853.33
JAPAN16.67960.00
NETHERLANDS16.671066.67
SINGAPORE16.671173.33
UAE16.671280.00
UK16.671386.67
USA213.3315100.00
UtilizationFrequencyPercentCumulative
Frequency
Cumulative
Percent
HIGH426.67426.67
LOW533.33960.00
MEDIUM640.0015100.00
Risk_FlagFrequencyPercentCumulative
Frequency
Cumulative
Percent
HIGH_RISK213.33213.33
NORMAL1386.6715100.00
Fraud_FlagFrequencyPercentCumulative
Frequency
Cumulative
Percent
CLEAR15100.0015100.00

11. CORRELATION ANALYSIS

proc corr data=fraud_check;

    var Power_Usage_PUE Downtime_Hours Cooling_Efficiency Sustainability_Score;

run;

OUTPUT:

The CORR Procedure

4 Variables:Power_Usage_PUE Downtime_Hours Cooling_Efficiency Sustainability_Score
Simple Statistics
VariableNMeanStd DevSumMinimumMaximum
Power_Usage_PUE151.586670.3248423.800001.200002.30000
Downtime_Hours1511.6666711.28632175.000001.0000040.00000
Cooling_Efficiency1577.2666711.12569115955.0000093.00000
Sustainability_Score1572.8666713.58501109345.0000091.00000
Pearson Correlation Coefficients, N = 15
Prob > |r| under H0: Rho=0
 Power_Usage_PUEDowntime_HoursCooling_EfficiencySustainability_Score
Power_Usage_PUE
1.00000
 
0.98062
<.0001
-0.98516
<.0001
-0.98939
<.0001
Downtime_Hours
0.98062
<.0001
1.00000
 
-0.94637
<.0001
-0.96372
<.0001
Cooling_Efficiency
-0.98516
<.0001
-0.94637
<.0001
1.00000
 
0.99553
<.0001
Sustainability_Score
-0.98939
<.0001
-0.96372
<.0001
0.99553
<.0001
1.00000
 

12. VISUALIZATION – PROC SGPLOT 

proc sgplot data=fraud_check;

    scatter x=Power_Usage_PUE y=Sustainability_Score;

run;

OUTPUT:

The SGPlot Procedure

13. APPEND,TRANSPOSE

CREATE A NEW DATASET

data fraud_check_new;

    set fraud_check;

    if Center_ID in (14,15);

run;

proc print data=fraud_check_new;

run;

OUTPUT:

ObsCenter_IDCenter_NameCountryPower_Usage_PUEServer_CountCooling_EfficiencyDowntime_HoursSustainability_ScoreInstall_DateCenter_CodeCurrent_DateYears_OperationalNext_MaintenanceUtilizationRisk_FlagFraud_Flag
114Xi_dcBRAZIL1.9900068226014DEC2018BRAZIL_1415FEB2026814DEC2023LOWNORMALCLEAR
215Omicron_UAE1.5115007987521JUN2016UAE_1515FEB20261021JUN2021MEDIUMNORMALCLEAR

·  Simulates incremental data load

·  Common in production environments

APPEND

proc append base=fraud_check

            data=fraud_check_new force;

run;

proc print data=fraud_check;

run;

OUTPUT:

ObsCenter_IDCenter_NameCountryPower_Usage_PUEServer_CountCooling_EfficiencyDowntime_HoursSustainability_ScoreInstall_DateCenter_CodeCurrent_DateYears_OperationalNext_MaintenanceUtilizationRisk_FlagFraud_Flag
11Alpha_dcUSA1.4120008257815JAN2015USA_115FEB20261115JAN2020MEDIUMNORMALCLEAR
22Beta_dcINDIA1.8950070186522MAR2016INDIA_215FEB20261022MAR2021LOWNORMALCLEAR
33Gamma_dcGERMANY1.3140008828510JUN2014GERMANY_315FEB20261210JUN2019HIGHNORMALCLEAR
44Delta_dcUK1.61100075107201DEC2017UK_415FEB2026901DEC2022MEDIUMNORMALCLEAR
55Epsilon_JAPAN1.2160009219009SEP2013JAPAN_515FEB20261309SEP2018HIGHNORMALCLEAR
66Zeta_dcINDIA2.1800060305012FEB2018INDIA_615FEB2026812FEB2023LOWHIGH_RISKCLEAR
77Eta_dcUSA1.5100007877419AUG2016USA_715FEB20261019AUG2021MEDIUMNORMALCLEAR
88Theta_dcCANADA1.4105008067725NOV2015CANADA_815FEB20261125NOV2020MEDIUMNORMALCLEAR
99Iota_dcAUSTRALIA1.7980073127011APR2017AUSTRALIA_915FEB2026911APR2022LOWNORMALCLEAR
1010Kappa_dcSINGAPORE1.3150009038806JUL2014SINGAPORE_1015FEB20261206JUL2019HIGHNORMALCLEAR
1111Lambda_dFRANCE1.6108007697318OCT2016FRANCE_1115FEB20261018OCT2021MEDIUMNORMALCLEAR
1212Mu_dcINDIA2.3700055404529JAN2019INDIA_1215FEB2026729JAN2024LOWHIGH_RISKCLEAR
1313Nu_dcNETHERLANDS1.2155009329103MAY2013NETHERLANDS_1315FEB20261303MAY2018HIGHNORMALCLEAR
1414Xi_dcBRAZIL1.9900068226014DEC2018BRAZIL_1415FEB2026814DEC2023LOWNORMALCLEAR
1515Omicron_UAE1.5115007987521JUN2016UAE_1515FEB20261021JUN2021MEDIUMNORMALCLEAR
1614Xi_dcBRAZIL1.9900068226014DEC2018BRAZIL_1415FEB2026814DEC2023LOWNORMALCLEAR
1715Omicron_UAE1.5115007987521JUN2016UAE_1515FEB20261021JUN2021MEDIUMNORMALCLEAR

·  fraud_check → historical master table

·  fraud_check_new → new records

·  Rows get physically added

·  Structure mismatch handled by FORCE

TRANSPOSE

proc transpose data=fraud_check out=dc_transposed;

    var Power_Usage_PUE Sustainability_Score;

run;

proc print data=dc_transposed;

run;

OUTPUT:

Obs_NAME_COL1COL2COL3COL4COL5COL6COL7COL8COL9COL10COL11COL12COL13COL14COL15COL16COL17
1Power_Usage_PUE1.41.81.31.61.22.11.51.41.71.31.62.31.21.91.51.91.5
2Sustainability_Score78.065.085.072.090.050.074.077.070.088.073.045.091.060.075.060.075.0

14. CLEANUP – PROC DATASETS DELETE

proc datasets library=work nolist;

    delete datacenter_raw;

quit;

LOG:

NOTE: Deleting WORK.DATACENTER_RAW (memtype=DATA).

15. Conclusion

This Data Center Analytics project demonstrates how SAS can be effectively used to transform raw operational data into meaningful business insights. By integrating DATA steps, PROC SQL, statistical procedures, macros, and advanced date functions, the analysis evaluates power efficiency, server utilization, cooling performance, downtime, and sustainability metrics across global data centers. The structured use of character and numeric functions ensures data standardization, while correlation and visualization techniques help uncover relationships between efficiency, downtime, and sustainability. Overall, the project reflects a realistic enterprise workflow where data quality, performance measurement, and operational monitoring are equally important.

From a business and interview perspective, the project highlights how SAS supports decision-making beyond basic reporting. Utilization and risk classification macros enable automation and scalability, while anomaly and fraud-detection logic addresses governance and ESG reliability concerns. Proper use of PROC APPEND, MERGE, SET, and TRANSPOSE mirrors real production environments with incremental data loads and evolving structures. In summary, this analysis showcases SAS as a powerful tool for operational intelligence, risk control, and sustainable data center management in modern organizations.


INTERVIEW QUESTIONS FOR YOU

1.       1.What is PROC MEANS used for in SAS?

2.     2.What is the difference between SET and MERGE statements?

3.       3.Why are macros used in SAS?

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

About the Author:

SAS Learning Hub is a data analytics and SAS programming platform focused on clinical, financial, and real-world data analysis. The content is created by professionals with academic training in Pharmaceutics and hands-on experience in Base SAS, PROC SQL, Macros, SDTM, and ADaM, providing practical and industry-relevant SAS learning resources.


Disclaimer:

The datasets and analysis in this article are created for educational and demonstration purposes only. They do not represent DATA CENTERS data.


Our Mission:

This blog provides industry-focused SAS programming tutorials and analytics projects covering finance, healthcare, and technology.


This project is suitable for:

·  Students learning SAS

·  Data analysts building portfolios

·  Professionals preparing for SAS interviews

·  Bloggers writing about analytics and smart cities


--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Follow Us On : 


 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

--->Follow our blog for more SAS-based analytics projects and industry data models.

---> Support Us By Following Our Blog..

To deepen your understanding of SAS analytics, please refer to our other data science and industry-focused projects listed below:

1.Which Country Truly Dominates the Olympics? – A Complete SAS Medal Efficiency Analytics Project

2.Which Airports Are Really the Busiest? – An End-to-End SAS Airport Traffic Analytics Project

3.Can Data Predict Election Outcomes? – A Complete SAS Voting Analytics Project

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

About Us | Contact Privacy Policy


Comments

Popular posts from this blog

397.If a satellite has excellent signal strength but very high latency, can it still deliver good quality communication? Why or why not?A Sas Study

383.Which Pharma Distributors Are High-Risk? Can SAS Detect Delays, Temperature Violations, and Fraud?

379.CAN SAS DELIVER END-TO-END TLF (TABLES, LISTINGS, AND FIGURES) FOR INSURANCE CLAIMS ANALYSIS?