Tuesday, 30 December 2025

355.FAMOUS NATURAL LANDSCAPES DATA ANALYSIS USING SAS DATA STEP | PROC SQL | PROC FREQ | PROC MEANS | PROC UNIVARIATE | MACROS | DATE FUNCTIONS (MDY - INTCK - INTNX) | MERGE | APPEND | TRANSPOSE

FAMOUS NATURAL LANDSCAPES DATA ANALYSIS USING SAS DATA STEP | PROC SQL | PROC FREQ | PROC MEANS | PROC UNIVARIATE | MACROS | DATE FUNCTIONS (MDY | INTCK | INTNX) | MERGE | APPEND | TRANSPOSE 

options nocenter;

1.LANDSCAPES BASE DATASET CREATION

data landscapes_base;

    length Landscape_Name $30 Location $25 Risk_Level $10;

    format Established_Date date9.;

    input Landscape_Name $ Location $ Height Area Tourists Risk_Level $ Established_Date :date9.;

    datalines;

MountEverest Nepal 8848 141 800 High 29MAY1953

GrandCanyon USA 2400 4926 6000 Medium 26FEB1919

NiagaraFalls USA_Canada 51 17 9000 Medium 01JAN1885

VictoriaFalls Zambia_Zimbabwe 108 1708 1500 High 18NOV1855

GreatBarrierReef Australia 0 344400 2000 Medium 11OCT1981

SaharaDesert Africa 450 9100000 1000 High 01JAN1920

AmazonRainforest Brazil 300 5500000 3500 High 05SEP1930

MountFuji Japan 3776 1227 3000 Medium 22JUN1934

YosemiteValley USA 1219 3029 4000 Low 01OCT1890

IguazuFalls Argentina_Brazil 82 2610 1400 Medium 02DEC1934

TableMountain SouthAfrica 1086 221 4500 Low 01JAN1923

DeadSea Israel_Jordan -430 605 1200 Medium 01JAN1948

;

run;

proc print data=landscapes_base;

run;

OUTPUT:

ObsLandscape_NameLocationRisk_LevelEstablished_DateHeightAreaTourists
1MountEverestNepalHigh29MAY19538848141800
2GrandCanyonUSAMedium26FEB1919240049266000
3NiagaraFallsUSA_CanadaMedium01JAN188551179000
4VictoriaFallsZambia_ZimbabweHigh18NOV185510817081500
5GreatBarrierReefAustraliaMedium11OCT198103444002000
6SaharaDesertAfricaHigh01JAN192045091000001000
7AmazonRainforestBrazilHigh05SEP193030055000003500
8MountFujiJapanMedium22JUN1934377612273000
9YosemiteValleyUSALow01OCT1890121930294000
10IguazuFallsArgentina_BrazilMedium02DEC19348226101400
11TableMountainSouthAfricaLow01JAN192310862214500
12DeadSeaIsrael_JordanMedium01JAN1948-4306051200


2.USING DATE FUNCTIONS (MDY, INTCK, INTNX)

2.1 Creating Derived Date Variables

data landscapes_dates;

    set landscapes_base;

    Review_Date = mdy(1,1,2025);

    Years_Since_Established = intck('year', Established_Date, Review_Date);

    Next_Review = intnx('year', Established_Date, 100, 'same');

    format Review_Date Next_Review date9.;

run;

proc print data=landscapes_dates;

run;

OUTPUT:

ObsLandscape_NameLocationRisk_LevelEstablished_DateHeightAreaTouristsReview_DateYears_Since_EstablishedNext_Review
1MountEverestNepalHigh29MAY1953884814180001JAN20257229MAY2053
2GrandCanyonUSAMedium26FEB191924004926600001JAN202510626FEB2019
3NiagaraFallsUSA_CanadaMedium01JAN18855117900001JAN202514001JAN1985
4VictoriaFallsZambia_ZimbabweHigh18NOV18551081708150001JAN202517018NOV1955
5GreatBarrierReefAustraliaMedium11OCT19810344400200001JAN20254411OCT2081
6SaharaDesertAfricaHigh01JAN19204509100000100001JAN202510501JAN2020
7AmazonRainforestBrazilHigh05SEP19303005500000350001JAN20259505SEP2030
8MountFujiJapanMedium22JUN193437761227300001JAN20259122JUN2034
9YosemiteValleyUSALow01OCT189012193029400001JAN202513501OCT1990
10IguazuFallsArgentina_BrazilMedium02DEC1934822610140001JAN20259102DEC2034
11TableMountainSouthAfricaLow01JAN19231086221450001JAN202510201JAN2023
12DeadSeaIsrael_JordanMedium01JAN1948-430605120001JAN20257701JAN2048


3.PROC SQL – DATA SELECTION AND DERIVATIONS

proc sql;

    create table landscapes_sql as

    select Landscape_Name,Location,Height,Area,Tourists,Risk_Level,Years_Since_Established,

           case 

              when Tourists > 5000 then 'Very High'

              when Tourists between 2000 and 5000 then 'High'

              else 'Moderate'

           end as Tourist_Pressure

    from landscapes_dates;

quit;

proc print data=landscapes_sql;

run;

OUTPUT:

ObsLandscape_NameLocationHeightAreaTouristsRisk_LevelYears_Since_EstablishedTourist_Pressure
1MountEverestNepal8848141800High72Moderate
2GrandCanyonUSA240049266000Medium106Very High
3NiagaraFallsUSA_Canada51179000Medium140Very High
4VictoriaFallsZambia_Zimbabwe10817081500High170Moderate
5GreatBarrierReefAustralia03444002000Medium44High
6SaharaDesertAfrica45091000001000High105Moderate
7AmazonRainforestBrazil30055000003500High95High
8MountFujiJapan377612273000Medium91High
9YosemiteValleyUSA121930294000Low135High
10IguazuFallsArgentina_Brazil8226101400Medium91Moderate
11TableMountainSouthAfrica10862214500Low102High
12DeadSeaIsrael_Jordan-4306051200Medium77Moderate


4.MACRO FOR SAFETY ZONE CLASSIFICATION

%macro safety_zone;

data landscapes_safety;

    set landscapes_sql;

    length Safety_Zone $12.;

    if Risk_Level='Low' and Tourists < 5000 then Safety_Zone='SAFE';

    else if Risk_Level='Medium' then Safety_Zone='CAUTION';

    else Safety_Zone='DANGER';

run;

proc print data=landscapes_safety;

run;

%mend;


%safety_zone;

OUTPUT:

ObsLandscape_NameLocationHeightAreaTouristsRisk_LevelYears_Since_EstablishedTourist_PressureSAFETY_ZONE
1MountEverestNepal8848141800High72ModerateDANGER
2GrandCanyonUSA240049266000Medium106Very HighCAUTION
3NiagaraFallsUSA_Canada51179000Medium140Very HighCAUTION
4VictoriaFallsZambia_Zimbabwe10817081500High170ModerateDANGER
5GreatBarrierReefAustralia03444002000Medium44HighCAUTION
6SaharaDesertAfrica45091000001000High105ModerateDANGER
7AmazonRainforestBrazil30055000003500High95HighDANGER
8MountFujiJapan377612273000Medium91HighCAUTION
9YosemiteValleyUSA121930294000Low135HighSAFE
10IguazuFallsArgentina_Brazil8226101400Medium91ModerateCAUTION
11TableMountainSouthAfrica10862214500Low102HighSAFE
12DeadSeaIsrael_Jordan-4306051200Medium77ModerateCAUTION


5.PROC FREQ – RISK & SAFETY DISTRIBUTION

proc freq data=landscapes_safety;

    tables Risk_Level Safety_Zone Tourist_Pressure;

run;

OUTPUT:

The FREQ Procedure

Risk_LevelFrequencyPercentCumulative
Frequency
Cumulative
Percent
High433.33433.33
Low216.67650.00
Medium650.0012100.00
SAFETY_ZONEFrequencyPercentCumulative
Frequency
Cumulative
Percent
CAUTION650.00650.00
DANGER433.331083.33
SAFE216.6712100.00
Tourist_PressureFrequencyPercentCumulative
Frequency
Cumulative
Percent
High541.67541.67
Moderate541.671083.33
Very High216.6712100.00

6.PROC MEANS – NUMERICAL SUMMARY

proc means data=landscapes_safety mean min max;

    var Height Area Tourists Years_Since_Established;

run;

OUTPUT:

The MEANS Procedure

VariableMeanMinimumMaximum
Height
Area
Tourists
Years_Since_Established
1490.83
1246573.67
3158.33
102.3333333
-430.0000000
17.0000000
800.0000000
44.0000000
8848.00
9100000.00
9000.00
170.0000000

7.PROC UNIVARIATE – DISTRIBUTION ANALYSIS

proc univariate data=landscapes_safety;

    var Tourists Area;

    histogram Tourists Area;

run;

OUTPUT:

The UNIVARIATE Procedure

Variable: Tourists

Moments
N12Sum Weights12
Mean3158.33333Sum Observations37900
Std Deviation2451.14383Variance6008106.06
Skewness1.35641286Kurtosis1.72775908
Uncorrected SS185790000Corrected SS66089166.7
Coeff Variation77.6087755Std Error Mean707.584274
Basic Statistical Measures
LocationVariability
Mean3158.333Std Deviation2451
Median2500.000Variance6008106
Mode.Range8200
  Interquartile Range2950
Tests for Location: Mu0=0
TestStatisticp Value
Student's tt4.463544Pr > |t|0.0010
SignM6Pr >= |M|0.0005
Signed RankS39Pr >= |S|0.0005
Quantiles (Definition 5)
LevelQuantile
100% Max9000
99%9000
95%9000
90%6000
75% Q34250
50% Median2500
25% Q11300
10%1000
5%800
1%800
0% Min800
Extreme Observations
LowestHighest
ValueObsValueObs
800135007
1000640009
120012450011
14001060002
1500490003

The UNIVARIATE Procedure

Histogram for Tourists

The UNIVARIATE Procedure

Variable: Area

Moments
N12Sum Weights12
Mean1246573.67Sum Observations14958884
Std Deviation2931510.71Variance8.59376E12
Skewness2.35228821Kurtosis4.82890991
Uncorrected SS1.13179E14Corrected SS9.45313E13
Coeff Variation235.165461Std Error Mean846254.249
Basic Statistical Measures
LocationVariability
Mean1246574Std Deviation2931511
Median2159Variance8.59376E12
Mode.Range9099983
  Interquartile Range174250
Tests for Location: Mu0=0
TestStatisticp Value
Student's tt1.473049Pr > |t|0.1688
SignM6Pr >= |M|0.0005
Signed RankS39Pr >= |S|0.0005
Quantiles (Definition 5)
LevelQuantile
100% Max9100000
99%9100000
95%9100000
90%5500000
75% Q3174663
50% Median2159
25% Q1413
10%141
5%17
1%17
0% Min17
Extreme Observations
LowestHighest
ValueObsValueObs
17330299
141149262
221113444005
6051255000007
1227891000006

The UNIVARIATE Procedure

Histogram for Area

8.PROC APPEND – ADDITIONAL LANDSCAPES

data landscapes_new;

    length Landscape_Name $30 Location $25 Risk_Level $10;

    input Landscape_Name $ Location $ Height Area Tourists Risk_Level $ Established_Date :date9.;

    datalines;

AngelFalls Venezuela 979 30000 900 Medium 16NOV1933

;

run;

proc print data=landscapes_new;

run;

OUTPUT:

ObsLandscape_NameLocationRisk_LevelHeightAreaTouristsEstablished_Date
1AngelFallsVenezuelaMedium97930000900-9542


proc append base=landscapes_base 

            data=landscapes_new force;

run;

proc print data=landscapes_base;

run;

OUTPUT:

ObsLandscape_NameLocationRisk_LevelEstablished_DateHeightAreaTourists
1MountEverestNepalHigh29MAY19538848141800
2GrandCanyonUSAMedium26FEB1919240049266000
3NiagaraFallsUSA_CanadaMedium01JAN188551179000
4VictoriaFallsZambia_ZimbabweHigh18NOV185510817081500
5GreatBarrierReefAustraliaMedium11OCT198103444002000
6SaharaDesertAfricaHigh01JAN192045091000001000
7AmazonRainforestBrazilHigh05SEP193030055000003500
8MountFujiJapanMedium22JUN1934377612273000
9YosemiteValleyUSALow01OCT1890121930294000
10IguazuFallsArgentina_BrazilMedium02DEC19348226101400
11TableMountainSouthAfricaLow01JAN192310862214500
12DeadSeaIsrael_JordanMedium01JAN1948-4306051200
13AngelFallsVenezuelaMedium16NOV193397930000900


9.MERGE – COMBINING SAFETY & DATE INFO

proc sort data=landscapes_base; by Landscape_Name; run;

proc print data=landscapes_base;

run;

OUTPUT:

ObsLandscape_NameLocationRisk_LevelEstablished_DateHeightAreaTourists
1AmazonRainforestBrazilHigh05SEP193030055000003500
2AngelFallsVenezuelaMedium16NOV193397930000900
3DeadSeaIsrael_JordanMedium01JAN1948-4306051200
4GrandCanyonUSAMedium26FEB1919240049266000
5GreatBarrierReefAustraliaMedium11OCT198103444002000
6IguazuFallsArgentina_BrazilMedium02DEC19348226101400
7MountEverestNepalHigh29MAY19538848141800
8MountFujiJapanMedium22JUN1934377612273000
9NiagaraFallsUSA_CanadaMedium01JAN188551179000
10SaharaDesertAfricaHigh01JAN192045091000001000
11TableMountainSouthAfricaLow01JAN192310862214500
12VictoriaFallsZambia_ZimbabweHigh18NOV185510817081500
13YosemiteValleyUSALow01OCT1890121930294000


proc sort data=landscapes_safety; by Landscape_Name; run;

proc print data=landscapes_safety;

run;

OUTPUT:

ObsLandscape_NameLocationHeightAreaTouristsRisk_LevelYears_Since_EstablishedTourist_PressureSAFETY_ZONE
1AmazonRainforestBrazil30055000003500High95HighDANGER
2DeadSeaIsrael_Jordan-4306051200Medium77ModerateCAUTION
3GrandCanyonUSA240049266000Medium106Very HighCAUTION
4GreatBarrierReefAustralia03444002000Medium44HighCAUTION
5IguazuFallsArgentina_Brazil8226101400Medium91ModerateCAUTION
6MountEverestNepal8848141800High72ModerateDANGER
7MountFujiJapan377612273000Medium91HighCAUTION
8NiagaraFallsUSA_Canada51179000Medium140Very HighCAUTION
9SaharaDesertAfrica45091000001000High105ModerateDANGER
10TableMountainSouthAfrica10862214500Low102HighSAFE
11VictoriaFallsZambia_Zimbabwe10817081500High170ModerateDANGER
12YosemiteValleyUSA121930294000Low135HighSAFE


data landscapes_merged;

    merge landscapes_base(in=a) landscapes_safety(in=b);

    by Landscape_Name;

    if a;

run;

proc print data=landscapes_merged;

run;

OUTPUT:

ObsLandscape_NameLocationRisk_LevelEstablished_DateHeightAreaTouristsYears_Since_EstablishedTourist_PressureSAFETY_ZONE
1AmazonRainforestBrazilHigh05SEP19303005500000350095HighDANGER
2AngelFallsVenezuelaMedium16NOV193397930000900.  
3DeadSeaIsrael_JordanMedium01JAN1948-430605120077ModerateCAUTION
4GrandCanyonUSAMedium26FEB1919240049266000106Very HighCAUTION
5GreatBarrierReefAustraliaMedium11OCT19810344400200044HighCAUTION
6IguazuFallsArgentina_BrazilMedium02DEC1934822610140091ModerateCAUTION
7MountEverestNepalHigh29MAY1953884814180072ModerateDANGER
8MountFujiJapanMedium22JUN193437761227300091HighCAUTION
9NiagaraFallsUSA_CanadaMedium01JAN188551179000140Very HighCAUTION
10SaharaDesertAfricaHigh01JAN192045091000001000105ModerateDANGER
11TableMountainSouthAfricaLow01JAN192310862214500102HighSAFE
12VictoriaFallsZambia_ZimbabweHigh18NOV185510817081500170ModerateDANGER
13YosemiteValleyUSALow01OCT1890121930294000135HighSAFE


10.PROC TRANSPOSE – SAFETY ZONE VIEW

proc transpose data=landscapes_safety

               out=safety_transposed;

    by Risk_Level NotSorted;

    var Tourists;

run;

proc print data=safety_transposed;

run;

OUTPUT:

ObsRisk_Level_NAME_COL1COL2COL3COL4
1HighTourists3500...
2MediumTourists1200600020001400
3HighTourists800...
4MediumTourists30009000..
5HighTourists1000...
6LowTourists4500...
7HighTourists1500...
8LowTourists4000...





To Visit My Previous Online Streaming Flatform Dataset:Click Here
To Visit My Previous Statistical Evaluation Of Clinical Trials:Click Here
To Visit My Previous Unlocking Retail Insights Dataset:Click Here
To Visit My Previous Sas Interview Questions-1:Click Here  



Follow Us On : 


 


--->FOLLOW OUR BLOG FOR MORE INFORMATION.

--->PLEASE DO COMMENTS AND SHARE OUR BLOG.

No comments:

Post a Comment