142.GLOBAL MOVIE TRENDS ANALYSIS: A COMPREHENSIVE STUDY OF MOVIE REVENUE | GENRE DISTRIBUTION | RATING PERFORMANCE AND AWARD WINNING TRENDS ACROSS MULTIPLE COUNTRIES AND DIRECTORS IN SAS
- Get link
- X
- Other Apps
GLOBAL MOVIE TRENDS ANALYSIS: A COMPREHENSIVE STUDY OF MOVIE REVENUE | GENRE DISTRIBUTION | RATING PERFORMANCE AND AWARD WINNING TRENDS ACROSS MULTIPLE COUNTRIES AND DIRECTORS IN SAS
/* Step 1: Creating a Detailed Dataset for Global Movie Trends */
/* This dataset contains details of popular movies, including financials, ratings, and key cast */
DATA Movies;
INPUT MovieID $ Title $ Genre $ ReleaseYear Budget Revenue IMDB_Rating RottenTomatoes_Score
Country $ Director $ Duration Language $ LeadActor $ LeadActress $ AwardsWon;
DATALINES;
M001 Inception Sci-Fi 2010 160 830 8.8 87 USA Nolan 148 English DiCaprio Page 4
M002 Parasite Thriller 2019 11 264 8.6 98 South_Korea Bong_Joon_Ho 132 Korean Kang_Ho Park 6
M003 Avatar Sci-Fi 2009 237 2847 7.8 82 USA Cameron 162 English Worthington Saldana 3
M004 Interstellar Sci-Fi 2014 165 677 8.6 72 USA Nolan 169 English McConaughey Hathaway 5
M005 Joker Thriller 2019 55 1074 8.4 68 USA Phillips 122 English Phoenix Beetz 2
M006 TheGodfather Crime 1972 6 250 9.2 98 USA Coppola 175 English Brando Keaton 7
M007 Titanic Romance 1997 200 2187 7.8 88 USA Cameron 195 English DiCaprio Winslet 11
M008 SpiritedAway Animation 2001 19 383 8.6 97 Japan Miyazaki 125 Japanese Irino Hiiragi 1
M009 TheDarkKnight Action 2008 185 1005 9.0 94 USA Nolan 152 English Bale Gyllenhaal 8
M010 Gladiator Action 2000 103 465 8.5 76 USA Scott 155 English Crowe Nielsen 5
;
RUN;
/* Step 2: Displaying the Dataset */
PROC PRINT DATA=Movies; RUN;
OUTPUT:
Obs | MovieID | Title | Genre | ReleaseYear | Budget | Revenue | IMDB_Rating | RottenTomatoes_Score | Country | Director | Duration | Language | LeadActor | LeadActress | AwardsWon |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M001 | Inceptio | Sci-Fi | 2010 | 160 | 830 | 8.8 | 87 | USA | Nolan | 148 | English | DiCaprio | Page | 4 |
2 | M002 | Parasite | Thriller | 2019 | 11 | 264 | 8.6 | 98 | South_Ko | Bong_Joo | 132 | Korean | Kang_Ho | Park | 6 |
3 | M003 | Avatar | Sci-Fi | 2009 | 237 | 2847 | 7.8 | 82 | USA | Cameron | 162 | English | Worthing | Saldana | 3 |
4 | M004 | Interste | Sci-Fi | 2014 | 165 | 677 | 8.6 | 72 | USA | Nolan | 169 | English | McConaug | Hathaway | 5 |
5 | M005 | Joker | Thriller | 2019 | 55 | 1074 | 8.4 | 68 | USA | Phillips | 122 | English | Phoenix | Beetz | 2 |
6 | M006 | TheGodfa | Crime | 1972 | 6 | 250 | 9.2 | 98 | USA | Coppola | 175 | English | Brando | Keaton | 7 |
7 | M007 | Titanic | Romance | 1997 | 200 | 2187 | 7.8 | 88 | USA | Cameron | 195 | English | DiCaprio | Winslet | 11 |
8 | M008 | Spirited | Animatio | 2001 | 19 | 383 | 8.6 | 97 | Japan | Miyazaki | 125 | Japanese | Irino | Hiiragi | 1 |
9 | M009 | TheDarkK | Action | 2008 | 185 | 1005 | 9.0 | 94 | USA | Nolan | 152 | English | Bale | Gyllenha | 8 |
10 | M010 | Gladiato | Action | 2000 | 103 | 465 | 8.5 | 76 | USA | Scott | 155 | English | Crowe | Nielsen | 5 |
/* Step 3: Calculating Summary Statistics */
PROC MEANS DATA=Movies MEAN MIN MAX STD;
VAR Budget Revenue IMDB_Rating RottenTomatoes_Score Duration AwardsWon;
RUN;
OUTPUT:
Variable | Mean | Minimum | Maximum | Std Dev | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
|
|
/* Step 4: Frequency Analysis of Movie Genres, Languages, and Countries */
PROC FREQ DATA=Movies;
TABLES Genre Language Country AwardsWon / NOCUM;
RUN;
OUTPUT:
Genre | Frequency | Percent |
---|---|---|
Action | 2 | 20.00 |
Animatio | 1 | 10.00 |
Crime | 1 | 10.00 |
Romance | 1 | 10.00 |
Sci-Fi | 3 | 30.00 |
Thriller | 2 | 20.00 |
Language | Frequency | Percent |
---|---|---|
English | 8 | 80.00 |
Japanese | 1 | 10.00 |
Korean | 1 | 10.00 |
Country | Frequency | Percent |
---|---|---|
Japan | 1 | 10.00 |
South_Ko | 1 | 10.00 |
USA | 8 | 80.00 |
AwardsWon | Frequency | Percent |
---|---|---|
1 | 1 | 10.00 |
2 | 1 | 10.00 |
3 | 1 | 10.00 |
4 | 1 | 10.00 |
5 | 2 | 20.00 |
6 | 1 | 10.00 |
7 | 1 | 10.00 |
8 | 1 | 10.00 |
11 | 1 | 10.00 |
/* Step 5: Sorting Data by Revenue and Awards */
PROC SORT DATA=Movies; BY DESCENDING Revenue; RUN;
PROC SORT DATA=Movies; BY DESCENDING AwardsWon; RUN;
PROC PRINT DATA=Movies; RUN;
OUTPUT:
Obs | MovieID | Title | Genre | ReleaseYear | Budget | Revenue | IMDB_Rating | RottenTomatoes_Score | Country | Director | Duration | Language | LeadActor | LeadActress | AwardsWon |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M007 | Titanic | Romance | 1997 | 200 | 2187 | 7.8 | 88 | USA | Cameron | 195 | English | DiCaprio | Winslet | 11 |
2 | M009 | TheDarkK | Action | 2008 | 185 | 1005 | 9.0 | 94 | USA | Nolan | 152 | English | Bale | Gyllenha | 8 |
3 | M006 | TheGodfa | Crime | 1972 | 6 | 250 | 9.2 | 98 | USA | Coppola | 175 | English | Brando | Keaton | 7 |
4 | M002 | Parasite | Thriller | 2019 | 11 | 264 | 8.6 | 98 | South_Ko | Bong_Joo | 132 | Korean | Kang_Ho | Park | 6 |
5 | M004 | Interste | Sci-Fi | 2014 | 165 | 677 | 8.6 | 72 | USA | Nolan | 169 | English | McConaug | Hathaway | 5 |
6 | M010 | Gladiato | Action | 2000 | 103 | 465 | 8.5 | 76 | USA | Scott | 155 | English | Crowe | Nielsen | 5 |
7 | M001 | Inceptio | Sci-Fi | 2010 | 160 | 830 | 8.8 | 87 | USA | Nolan | 148 | English | DiCaprio | Page | 4 |
8 | M003 | Avatar | Sci-Fi | 2009 | 237 | 2847 | 7.8 | 82 | USA | Cameron | 162 | English | Worthing | Saldana | 3 |
9 | M005 | Joker | Thriller | 2019 | 55 | 1074 | 8.4 | 68 | USA | Phillips | 122 | English | Phoenix | Beetz | 2 |
10 | M008 | Spirited | Animatio | 2001 | 19 | 383 | 8.6 | 97 | Japan | Miyazaki | 125 | Japanese | Irino | Hiiragi | 1 |
/* Step 6: Using PROC SQL to Filter High Revenue, Long Duration, and Award-Winning Movies */
PROC SQL;
CREATE TABLE HighRevenueMovies AS SELECT * FROM Movies WHERE Revenue > 1000;
PROC PRINT DATA=HighRevenueMovies; RUN;
OUTPUT:
Obs | MovieID | Title | Genre | ReleaseYear | Budget | Revenue | IMDB_Rating | RottenTomatoes_Score | Country | Director | Duration | Language | LeadActor | LeadActress | AwardsWon |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M007 | Titanic | Romance | 1997 | 200 | 2187 | 7.8 | 88 | USA | Cameron | 195 | English | DiCaprio | Winslet | 11 |
2 | M009 | TheDarkK | Action | 2008 | 185 | 1005 | 9.0 | 94 | USA | Nolan | 152 | English | Bale | Gyllenha | 8 |
3 | M003 | Avatar | Sci-Fi | 2009 | 237 | 2847 | 7.8 | 82 | USA | Cameron | 162 | English | Worthing | Saldana | 3 |
4 | M005 | Joker | Thriller | 2019 | 55 | 1074 | 8.4 | 68 | USA | Phillips | 122 | English | Phoenix | Beetz | 2 |
CREATE TABLE LongDurationMovies AS SELECT * FROM Movies WHERE Duration > 150;
PROC PRINT DATA=LongDurationMovies; RUN;
OUTPUT:
Obs | MovieID | Title | Genre | ReleaseYear | Budget | Revenue | IMDB_Rating | RottenTomatoes_Score | Country | Director | Duration | Language | LeadActor | LeadActress | AwardsWon |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M007 | Titanic | Romance | 1997 | 200 | 2187 | 7.8 | 88 | USA | Cameron | 195 | English | DiCaprio | Winslet | 11 |
2 | M009 | TheDarkK | Action | 2008 | 185 | 1005 | 9.0 | 94 | USA | Nolan | 152 | English | Bale | Gyllenha | 8 |
3 | M006 | TheGodfa | Crime | 1972 | 6 | 250 | 9.2 | 98 | USA | Coppola | 175 | English | Brando | Keaton | 7 |
4 | M004 | Interste | Sci-Fi | 2014 | 165 | 677 | 8.6 | 72 | USA | Nolan | 169 | English | McConaug | Hathaway | 5 |
5 | M010 | Gladiato | Action | 2000 | 103 | 465 | 8.5 | 76 | USA | Scott | 155 | English | Crowe | Nielsen | 5 |
6 | M003 | Avatar | Sci-Fi | 2009 | 237 | 2847 | 7.8 | 82 | USA | Cameron | 162 | English | Worthing | Saldana | 3 |
QUIT;
PROC PRINT DATA=AwardWinningMovies; RUN;
OUTPUT:
Obs | MovieID | Title | Genre | ReleaseYear | Budget | Revenue | IMDB_Rating | RottenTomatoes_Score | Country | Director | Duration | Language | LeadActor | LeadActress | AwardsWon |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M007 | Titanic | Romance | 1997 | 200 | 2187 | 7.8 | 88 | USA | Cameron | 195 | English | DiCaprio | Winslet | 11 |
2 | M009 | TheDarkK | Action | 2008 | 185 | 1005 | 9.0 | 94 | USA | Nolan | 152 | English | Bale | Gyllenha | 8 |
3 | M006 | TheGodfa | Crime | 1972 | 6 | 250 | 9.2 | 98 | USA | Coppola | 175 | English | Brando | Keaton | 7 |
4 | M002 | Parasite | Thriller | 2019 | 11 | 264 | 8.6 | 98 | South_Ko | Bong_Joo | 132 | Korean | Kang_Ho | Park | 6 |
5 | M004 | Interste | Sci-Fi | 2014 | 165 | 677 | 8.6 | 72 | USA | Nolan | 169 | English | McConaug | Hathaway | 5 |
6 | M010 | Gladiato | Action | 2000 | 103 | 465 | 8.5 | 76 | USA | Scott | 155 | English | Crowe | Nielsen | 5 |
7 | M001 | Inceptio | Sci-Fi | 2010 | 160 | 830 | 8.8 | 87 | USA | Nolan | 148 | English | DiCaprio | Page | 4 |
/* Step 7: Generating a Detailed Report */
PROC REPORT DATA=Movies NOWD;
COLUMN Title Genre Budget Revenue IMDB_Rating Director Duration AwardsWon;
DEFINE Title / DISPLAY 'Movie Title';
DEFINE Genre / GROUP 'Genre';
DEFINE Budget / ANALYSIS SUM 'Budget ($M)';
DEFINE Revenue / ANALYSIS SUM 'Revenue ($M)';
DEFINE IMDB_Rating / ANALYSIS MEAN 'Avg IMDb Rating';
DEFINE Director / DISPLAY 'Director';
DEFINE Duration / ANALYSIS MEAN 'Avg Duration (mins)';
DEFINE AwardsWon / ANALYSIS SUM 'Total Awards Won';
RUN;
OUTPUT:
Movie Title | Genre | Budget ($M) | Revenue ($M) | Avg IMDb Rating | Director | Avg Duration (mins) | Total Awards Won |
---|---|---|---|---|---|---|---|
TheDarkK | Action | 185 | 1005 | 9 | Nolan | 152 | 8 |
Gladiato | 103 | 465 | 8.5 | Scott | 155 | 5 | |
Spirited | Animatio | 19 | 383 | 8.6 | Miyazaki | 125 | 1 |
TheGodfa | Crime | 6 | 250 | 9.2 | Coppola | 175 | 7 |
Titanic | Romance | 200 | 2187 | 7.8 | Cameron | 195 | 11 |
Interste | Sci-Fi | 165 | 677 | 8.6 | Nolan | 169 | 5 |
Inceptio | 160 | 830 | 8.8 | Nolan | 148 | 4 | |
Avatar | 237 | 2847 | 7.8 | Cameron | 162 | 3 | |
Parasite | Thriller | 11 | 264 | 8.6 | Bong_Joo | 132 | 6 |
Joker | 55 | 1074 | 8.4 | Phillips | 122 | 2 |
/* Step 8: Analyzing Revenue and Budget Relationships */
PROC CORR DATA=Movies;
VAR Budget Revenue AwardsWon;
RUN;
OUTPUT:
3 Variables: | Budget Revenue AwardsWon |
---|
Simple Statistics | ||||||
---|---|---|---|---|---|---|
Variable | N | Mean | Std Dev | Sum | Minimum | Maximum |
Budget | 10 | 114.10000 | 86.39888 | 1141 | 6.00000 | 237.00000 |
Revenue | 10 | 998.20000 | 864.75338 | 9982 | 250.00000 | 2847 |
AwardsWon | 10 | 5.20000 | 2.97396 | 52.00000 | 1.00000 | 11.00000 |
Pearson Correlation
Coefficients, N = 10 Prob > |r| under H0: Rho=0 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Budget | Revenue | AwardsWon | |||||||
Budget |
|
|
| ||||||
Revenue |
|
|
| ||||||
AwardsWon |
|
|
|
/* Step 9: Grouping by Director and Analyzing Performance */
PROC MEANS DATA=Movies MEAN MAX MIN;
CLASS Director;
VAR Revenue IMDB_Rating AwardsWon;
RUN;
OUTPUT:
Director | N Obs | Variable | Mean | Maximum | Minimum | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bong_Joo | 1 |
|
|
|
| ||||||||||||
Cameron | 2 |
|
|
|
| ||||||||||||
Coppola | 1 |
|
|
|
| ||||||||||||
Miyazaki | 1 |
|
|
|
| ||||||||||||
Nolan | 3 |
|
|
|
| ||||||||||||
Phillips | 1 |
|
|
|
| ||||||||||||
Scott | 1 |
|
|
|
|
/* Step 10: Advanced Data Transformation - Normalizing Revenue and Awards */
DATA MoviesNormalized;
SET Movies;
Revenue_Normalized = (Revenue - 250) / (2847 - 250);
Awards_Normalized = AwardsWon / 11;
RUN;
PROC PRINT DATA=MoviesNormalized; RUN;
OUTPUT:
Obs | MovieID | Title | Genre | ReleaseYear | Budget | Revenue | IMDB_Rating | RottenTomatoes_Score | Country | Director | Duration | Language | LeadActor | LeadActress | AwardsWon | Revenue_Normalized | Awards_Normalized |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M007 | Titanic | Romance | 1997 | 200 | 2187 | 7.8 | 88 | USA | Cameron | 195 | English | DiCaprio | Winslet | 11 | 0.74586 | 1.00000 |
2 | M009 | TheDarkK | Action | 2008 | 185 | 1005 | 9.0 | 94 | USA | Nolan | 152 | English | Bale | Gyllenha | 8 | 0.29072 | 0.72727 |
3 | M006 | TheGodfa | Crime | 1972 | 6 | 250 | 9.2 | 98 | USA | Coppola | 175 | English | Brando | Keaton | 7 | 0.00000 | 0.63636 |
4 | M002 | Parasite | Thriller | 2019 | 11 | 264 | 8.6 | 98 | South_Ko | Bong_Joo | 132 | Korean | Kang_Ho | Park | 6 | 0.00539 | 0.54545 |
5 | M004 | Interste | Sci-Fi | 2014 | 165 | 677 | 8.6 | 72 | USA | Nolan | 169 | English | McConaug | Hathaway | 5 | 0.16442 | 0.45455 |
6 | M010 | Gladiato | Action | 2000 | 103 | 465 | 8.5 | 76 | USA | Scott | 155 | English | Crowe | Nielsen | 5 | 0.08279 | 0.45455 |
7 | M001 | Inceptio | Sci-Fi | 2010 | 160 | 830 | 8.8 | 87 | USA | Nolan | 148 | English | DiCaprio | Page | 4 | 0.22333 | 0.36364 |
8 | M003 | Avatar | Sci-Fi | 2009 | 237 | 2847 | 7.8 | 82 | USA | Cameron | 162 | English | Worthing | Saldana | 3 | 1.00000 | 0.27273 |
9 | M005 | Joker | Thriller | 2019 | 55 | 1074 | 8.4 | 68 | USA | Phillips | 122 | English | Phoenix | Beetz | 2 | 0.31729 | 0.18182 |
10 | M008 | Spirited | Animatio | 2001 | 19 | 383 | 8.6 | 97 | Japan | Miyazaki | 125 | Japanese | Irino | Hiiragi | 1 | 0.05121 | 0.09091 |
/* Step 11: Creating Boxplots for Revenue and Awards Distribution */
PROC SGPLOT DATA=Movies;
VBOX Revenue / CATEGORY=Genre;
TITLE "Revenue Distribution by Genre";
RUN;
PROC SGPLOT DATA=Movies;
VBOX AwardsWon / CATEGORY=Genre;
TITLE "Awards Distribution by Genre";
RUN;
/* Step 12: Exporting the Final Processed Dataset */
PROC EXPORT DATA=Movies
OUTFILE="/home/movies_analysis.csv"
DBMS=CSV
REPLACE;
RUN;
/* Additional Analysis: Revenue per Minute */
DATA RevenuePerMinute;
SET Movies;
Revenue_Per_Minute = Revenue / Duration;
RUN;
PROC PRINT DATA=RevenuePerMinute; RUN;
OUTPUT:
Obs | MovieID | Title | Genre | ReleaseYear | Budget | Revenue | IMDB_Rating | RottenTomatoes_Score | Country | Director | Duration | Language | LeadActor | LeadActress | AwardsWon | Revenue_Per_Minute |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M007 | Titanic | Romance | 1997 | 200 | 2187 | 7.8 | 88 | USA | Cameron | 195 | English | DiCaprio | Winslet | 11 | 11.2154 |
2 | M009 | TheDarkK | Action | 2008 | 185 | 1005 | 9.0 | 94 | USA | Nolan | 152 | English | Bale | Gyllenha | 8 | 6.6118 |
3 | M006 | TheGodfa | Crime | 1972 | 6 | 250 | 9.2 | 98 | USA | Coppola | 175 | English | Brando | Keaton | 7 | 1.4286 |
4 | M002 | Parasite | Thriller | 2019 | 11 | 264 | 8.6 | 98 | South_Ko | Bong_Joo | 132 | Korean | Kang_Ho | Park | 6 | 2.0000 |
5 | M004 | Interste | Sci-Fi | 2014 | 165 | 677 | 8.6 | 72 | USA | Nolan | 169 | English | McConaug | Hathaway | 5 | 4.0059 |
6 | M010 | Gladiato | Action | 2000 | 103 | 465 | 8.5 | 76 | USA | Scott | 155 | English | Crowe | Nielsen | 5 | 3.0000 |
7 | M001 | Inceptio | Sci-Fi | 2010 | 160 | 830 | 8.8 | 87 | USA | Nolan | 148 | English | DiCaprio | Page | 4 | 5.6081 |
8 | M003 | Avatar | Sci-Fi | 2009 | 237 | 2847 | 7.8 | 82 | USA | Cameron | 162 | English | Worthing | Saldana | 3 | 17.5741 |
9 | M005 | Joker | Thriller | 2019 | 55 | 1074 | 8.4 | 68 | USA | Phillips | 122 | English | Phoenix | Beetz | 2 | 8.8033 |
10 | M008 | Spirited | Animatio | 2001 | 19 | 383 | 8.6 | 97 | Japan | Miyazaki | 125 | Japanese | Irino | Hiiragi | 1 | 3.0640 |
/* Comparing Ratings: IMDb vs Rotten Tomatoes */
PROC SGPLOT DATA=Movies;
SCATTER X=IMDB_Rating Y=RottenTomatoes_Score / GROUP=Genre;
TITLE "Comparison of IMDb and Rotten Tomatoes Ratings";
RUN;
/* Adding More Insights - Average Revenue per Genre */
PROC SQL;
CREATE TABLE GenreRevenue AS
SELECT Genre, AVG(Revenue) AS Avg_Revenue
FROM Movies
GROUP BY Genre;
QUIT;
PROC PRINT DATA=GenreRevenue; RUN;
OUTPUT:
Obs | Genre | Avg_Revenue |
---|---|---|
1 | Action | 735.00 |
2 | Animatio | 383.00 |
3 | Crime | 250.00 |
4 | Romance | 2187.00 |
5 | Sci-Fi | 1451.33 |
6 | Thriller | 669.00 |
/* Calculating Median Revenue for Each Genre */
PROC MEANS DATA=Movies MEDIAN;
CLASS Genre;
VAR Revenue;
RUN;
OUTPUT:
Analysis Variable : Revenue | ||
---|---|---|
Genre | N Obs | Median |
Action | 2 | 735.0000000 |
Animatio | 1 | 383.0000000 |
Crime | 1 | 250.0000000 |
Romance | 1 | 2187.00 |
Sci-Fi | 3 | 830.0000000 |
Thriller | 2 | 669.0000000 |
- Get link
- X
- Other Apps
Comments
Post a Comment