228.GLOBAL ANALYSIS OF INFLUENCERS WORLDWIDE USING PROC FORMAT | PROC PRINT | PROC CONTENTS | PROC MEANS | PROC SUMMARY | PROC FREQ | PROC SORT | PROC SGPLOT | PROC SQL | PROC EXPORT | SAS MACROS IN SAS
- Get link
- X
- Other Apps
GLOBAL ANALYSIS OF INFLUENCERS WORLDWIDE USING PROC FORMAT | PROC PRINT | PROC CONTENTS | PROC MEANS | PROC SUMMARY | PROC FREQ | PROC SORT | PROC SGPLOT | PROC SQL | PROC EXPORT | SAS MACROS IN SAS
/*Creating and exploring a “Worldwide Influencers” dataset*/
1.Setting global OPTIONS
OPTIONS
NOCENTER
FULLSTIMER
YEARCUTOFF=1950
ERRORS=3
DKRICOND=ERROR; /* raise error if duplicate key in PROC SQL update */
2.Creating the dataset with DATA‑step functions
Step 1: Define custom format
proc format;
value tierfmt
1 = 'Nano (≤100K)'
2 = 'Micro (100K–999K)'
3 = 'Mid (1M–4.9M)'
4 = 'Macro (5M–9.9M)'
5 = 'Mega (10M+)';
run;
Step 2: Create influencer dataset
data work.influencers_worldwide;
length InfluencerID 8 Name $40 Age 8 Region $20 Country $25 Platform $12
Category $20 Followers_Millions 8 EngagementRate_Pct 8
Avg_Views_K 8 Launch_Y Launch_M Launch_D 8
Birth_Y Birth_M Birth_D 8 Launch_Date Birth_Date 8
Collaboration_Tier 8;
format Launch_Date Birth_Date date9.
EngagementRate_Pct 5.2
Followers_Millions 6.1
Avg_Views_K 6.1
Collaboration_Tier tierfmt.;
input InfluencerID
Name & :$40.
Country & :$25.
Platform & :$12.
Category & :$20.
Followers_Millions
EngagementRate_Pct
Avg_Views_K
Launch_Y Launch_M Launch_D
Birth_Y Birth_M Birth_D;
/* Derived fields */
Region = scan(Country, -1, ' ') || '-' || upcase(substr(Country, 1, 3));
Launch_Date = mdy(Launch_M, Launch_D, Launch_Y);
Birth_Date = mdy(Birth_M, Birth_D, Birth_Y);
Age = intck('YEAR', Birth_Date, today(), 'C');
select;
when (Followers_Millions < 0.1) Collaboration_Tier = 1;
when (Followers_Millions < 1) Collaboration_Tier = 2;
when (Followers_Millions < 5) Collaboration_Tier = 3;
when (Followers_Millions < 10) Collaboration_Tier = 4;
otherwise Collaboration_Tier = 5;
end;
datalines;
1 Addison Rae United States TIKTOK Beauty 88.9 4.7 1300 2019 7 14 2000 10 6
2 Khaby Lame Italy TIKTOK Comedy 162 7.5 2000 2020 3 15 2000 3 9
3 Huda Kattan UAE INSTAGRAM Beauty 52 3.2 900 2010 7 10 1983 10 2
4 Zach King United States YOUTUBE Illusions 25 8.1 750 2008 1 15 1990 2 4
5 PewDiePie Sweden YOUTUBE Gaming 111 3.1 3000 2010 4 29 1989 10 24
6 Charli D’Amelio United States TIKTOK Dance 152 5.2 2500 2019 6 30 2004 5 1
7 Dude Perfect United States YOUTUBE Sports 62 4.0 2800 2009 3 16 1988 5 16
8 NikkieTutorials Netherlands INSTAGRAM Beauty 19.0 4.5 550 2012 6 24 1994 3 2
9 Lionel Messi Argentina INSTAGRAM Sports 504 2.7 7200 2013 5 1 1987 6 24
10 Cristiano Ronaldo Portugal INSTAGRAM Sports 630 2.8 8200 2012 2 14 1985 2 5
11 MrBeast United States YOUTUBE Philanthropy 274 6.2 5000 2012 2 19 1998 5 7
12 Marie Kondo Japan INSTAGRAM Lifestyle 8.7 4.1 200 2015 1 1 1984 10 9
13 Jay Shetty United Kingdom INSTAGRAM Education 16.0 5.8 400 2016 3 5 1987 9 6
14 Yolanda Gampp Canada YOUTUBE Baking 5.4 9.0 220 2015 5 12 1977 7 21
15 Kayla Itsines Australia INSTAGRAM Fitness 16.6 3.9 380 2012 3 24 1991 5 21
16 TravelMad World India INSTAGRAM Travel 2.3 6.5 120 2018 8 9 1992 8 10
17 Najmul Cooking Bangladesh FACEBOOK Cooking 3.1 10.2 95 2019 11 2 1985 11 5
18 Nuseir Yassin Israel FACEBOOK Travel 20 6.1 600 2016 4 9 1992 2 9
19 Macarena Achaga Argentina TIKTOK Comedy 4.8 9.3 160 2021 1 1 1992 3 5
20 TechGirlNikki Kenya YOUTUBE Tech 1.2 8.0 87 2020 9 18 1998 12 12
;
run;
Step 3: Print dataset to verify
proc print data=work.influencers_worldwide; run;
Output:
Obs | InfluencerID | Name | Age | Region | Country | Platform | Category | Followers_Millions | EngagementRate_Pct | Avg_Views_K | Launch_Y | Launch_M | Launch_D | Birth_Y | Birth_M | Birth_D | Launch_Date | Birth_Date | Collaboration_Tier |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | Addison Rae | 14 | States-UNI | United States | TIKTOK | Beauty | 88.9 | 4.70 | 1300.0 | 2019 | 7 | 14 | 2000 | 10 | 6 | 14JUL2019 | 06OCT2000 | Mega (10M+) |
2 | 2 | Khaby Lame | 15 | Italy-ITA | Italy | TIKTOK | Comedy | 162.0 | 7.50 | 2000.0 | 2020 | 3 | 15 | 2000 | 3 | 9 | 15MAR2020 | 09MAR2000 | Mega (10M+) |
3 | 3 | Huda Kattan | 31 | UAE-UAE | UAE | Beauty | 52.0 | 3.20 | 900.0 | 2010 | 7 | 10 | 1983 | 10 | 2 | 10JUL2010 | 02OCT1983 | Mega (10M+) | |
4 | 4 | Zach King | 25 | States-UNI | United States | YOUTUBE | Illusions | 25.0 | 8.10 | 750.0 | 2008 | 1 | 15 | 1990 | 2 | 4 | 15JAN2008 | 04FEB1990 | Mega (10M+) |
5 | 5 | PewDiePie | 25 | Sweden-SWE | Sweden | YOUTUBE | Gaming | 111.0 | 3.10 | 3000.0 | 2010 | 4 | 29 | 1989 | 10 | 24 | 29APR2010 | 24OCT1989 | Mega (10M+) |
6 | 6 | Charli D’Amelio | 11 | States-UNI | United States | TIKTOK | Dance | 152.0 | 5.20 | 2500.0 | 2019 | 6 | 30 | 2004 | 5 | 1 | 30JUN2019 | 01MAY2004 | Mega (10M+) |
7 | 7 | Dude Perfect | 27 | States-UNI | United States | YOUTUBE | Sports | 62.0 | 4.00 | 2800.0 | 2009 | 3 | 16 | 1988 | 5 | 16 | 16MAR2009 | 16MAY1988 | Mega (10M+) |
8 | 8 | NikkieTutorials | 21 | Netherlands-NET | Netherlands | Beauty | 19.0 | 4.50 | 550.0 | 2012 | 6 | 24 | 1994 | 3 | 2 | 24JUN2012 | 02MAR1994 | Mega (10M+) | |
9 | 9 | Lionel Messi | 28 | Argentina-ARG | Argentina | Sports | 504.0 | 2.70 | 7200.0 | 2013 | 5 | 1 | 1987 | 6 | 24 | 01MAY2013 | 24JUN1987 | Mega (10M+) | |
10 | 10 | Cristiano Ronaldo | 30 | Portugal-POR | Portugal | Sports | 630.0 | 2.80 | 8200.0 | 2012 | 2 | 14 | 1985 | 2 | 5 | 14FEB2012 | 05FEB1985 | Mega (10M+) | |
11 | 11 | MrBeast | 17 | States-UNI | United States | YOUTUBE | Philanthropy | 274.0 | 6.20 | 5000.0 | 2012 | 2 | 19 | 1998 | 5 | 7 | 19FEB2012 | 07MAY1998 | Mega (10M+) |
12 | 12 | Marie Kondo | 30 | Japan-JAP | Japan | Lifestyle | 8.7 | 4.10 | 200.0 | 2015 | 1 | 1 | 1984 | 10 | 9 | 01JAN2015 | 09OCT1984 | Macro (5M–9.9M) | |
13 | 13 | Jay Shetty | 28 | Kingdom-UNI | United Kingdom | Education | 16.0 | 5.80 | 400.0 | 2016 | 3 | 5 | 1987 | 9 | 6 | 05MAR2016 | 06SEP1987 | Mega (10M+) | |
14 | 14 | Yolanda Gampp | 38 | Canada-CAN | Canada | YOUTUBE | Baking | 5.4 | 9.00 | 220.0 | 2015 | 5 | 12 | 1977 | 7 | 21 | 12MAY2015 | 21JUL1977 | Macro (5M–9.9M) |
15 | 15 | Kayla Itsines | 24 | Australia-AUS | Australia | Fitness | 16.6 | 3.90 | 380.0 | 2012 | 3 | 24 | 1991 | 5 | 21 | 24MAR2012 | 21MAY1991 | Mega (10M+) | |
16 | 16 | TravelMad World | 23 | India-IND | India | Travel | 2.3 | 6.50 | 120.0 | 2018 | 8 | 9 | 1992 | 8 | 10 | 09AUG2018 | 10AUG1992 | Mid (1M–4.9M) | |
17 | 17 | Najmul Cooking | 29 | Bangladesh-BAN | Bangladesh | Cooking | 3.1 | 10.20 | 95.0 | 2019 | 11 | 2 | 1985 | 11 | 5 | 02NOV2019 | 05NOV1985 | Mid (1M–4.9M) | |
18 | 18 | Nuseir Yassin | 23 | Israel-ISR | Israel | Travel | 20.0 | 6.10 | 600.0 | 2016 | 4 | 9 | 1992 | 2 | 9 | 09APR2016 | 09FEB1992 | Mega (10M+) | |
19 | 19 | Macarena Achaga | 23 | Argentina-ARG | Argentina | TIKTOK | Comedy | 4.8 | 9.30 | 160.0 | 2021 | 1 | 1 | 1992 | 3 | 5 | 01JAN2021 | 05MAR1992 | Mid (1M–4.9M) |
20 | 20 | TechGirlNikki | 16 | Kenya-KEN | Kenya | YOUTUBE | Tech | 1.2 | 8.00 | 87.0 | 2020 | 9 | 18 | 1998 | 12 | 12 | 18SEP2020 | 12DEC1998 | Mid (1M–4.9M) |
3.Peeking under the hood: PROC CONTENTS
PROC CONTENTS DATA=work.influencers_worldwide VARNUM;
TITLE "Structural metadata for INFLUENCERS_WORLDWIDE";
RUN;
Output:
Structural metadata for INFLUENCERS_WORLDWIDE |
Data Set Name | WORK.INFLUENCERS_WORLDWIDE | Observations | 20 |
---|---|---|---|
Member Type | DATA | Variables | 19 |
Engine | V9 | Indexes | 0 |
Created | 14/09/2015 00:33:34 | Observation Length | 232 |
Last Modified | 14/09/2015 00:33:34 | Deleted Observations | 0 |
Protection | Compressed | NO | |
Data Set Type | Sorted | NO | |
Label | |||
Data Representation | WINDOWS_64 | ||
Encoding | wlatin1 Western (Windows) |
Engine/Host Dependent Information | |
---|---|
Data Set Page Size | 65536 |
Number of Data Set Pages | 1 |
First Data Page | 1 |
Max Obs per Page | 282 |
Obs in First Data Page | 20 |
Number of Data Set Repairs | 0 |
ExtendObsCounter | YES |
Filename | C:\Users\Lenovo\AppData\Local\Temp\SAS Temporary Files\_TD15916_DESKTOP-QFAA4KV_\influencers_worldwide.sas7bdat |
Release Created | 9.0401M2 |
Host Created | X64_8HOME |
Variables in Creation Order | ||||
---|---|---|---|---|
# | Variable | Type | Len | Format |
1 | InfluencerID | Num | 8 | |
2 | Name | Char | 40 | |
3 | Age | Num | 8 | |
4 | Region | Char | 20 | |
5 | Country | Char | 25 | |
6 | Platform | Char | 12 | |
7 | Category | Char | 20 | |
8 | Followers_Millions | Num | 8 | 6.1 |
9 | EngagementRate_Pct | Num | 8 | 5.2 |
10 | Avg_Views_K | Num | 8 | 6.1 |
11 | Launch_Y | Num | 8 | |
12 | Launch_M | Num | 8 | |
13 | Launch_D | Num | 8 | |
14 | Birth_Y | Num | 8 | |
15 | Birth_M | Num | 8 | |
16 | Birth_D | Num | 8 | |
17 | Launch_Date | Num | 8 | DATE9. |
18 | Birth_Date | Num | 8 | DATE9. |
19 | Collaboration_Tier | Num | 8 | TIERFMT. |
4.Basic prints with PROC PRINT and WHERE‑logic
PROC PRINT DATA=work.influencers_worldwide
NOOBS LABEL SPLIT='*';
WHERE Platform='INSTAGRAM' AND EngagementRate_Pct > 4;
VAR Name Country Followers_Millions EngagementRate_Pct Category;
TITLE "High‑engagement Instagram creators (>4% ER)";
RUN;
Output:
High-engagement Instagram creators (>4% ER) |
Name | Country | Followers_Millions | EngagementRate_Pct | Category |
---|---|---|---|---|
NikkieTutorials | Netherlands | 19.0 | 4.50 | Beauty |
Marie Kondo | Japan | 8.7 | 4.10 | Lifestyle |
Jay Shetty | United Kingdom | 16.0 | 5.80 | Education |
TravelMad World | India | 2.3 | 6.50 | Travel |
5.Descriptive statistics: PROC MEANS and PROC SUMMARY
PROC MEANS DATA=work.influencers_worldwide N MEAN STD MIN MAX MAXDEC=2;
CLASS Platform;
VAR Followers_Millions EngagementRate_Pct Avg_Views_K Age;
TITLE "Platform‑wise central tendency and spread";
RUN;
Output:
Platform-wise central tendency and spread |
Platform | N Obs | Variable | N | Mean | Std Dev | Minimum | Maximum | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 |
|
|
|
|
|
| |||||||||||||||||||||||||
8 |
|
|
|
|
|
| |||||||||||||||||||||||||
TIKTOK | 4 |
|
|
|
|
|
| ||||||||||||||||||||||||
YOUTUBE | 6 |
|
|
|
|
|
|
PROC SUMMARY DATA=work.influencers_worldwide NWAY;
CLASS Category Collaboration_Tier;
VAR Followers_Millions;
OUTPUT OUT=work.mean_by_tier
MEAN=Avg_Followers_M;
RUN;
Output:
Obs | Category | Collaboration_Tier | _TYPE_ | _FREQ_ | Avg_Followers_M |
---|---|---|---|---|---|
1 | Baking | Macro (5M–9.9M) | 3 | 1 | 5.4 |
2 | Beauty | Mega (10M+) | 3 | 3 | 53.3 |
3 | Comedy | Mid (1M–4.9M) | 3 | 1 | 4.8 |
4 | Comedy | Mega (10M+) | 3 | 1 | 162.0 |
5 | Cooking | Mid (1M–4.9M) | 3 | 1 | 3.1 |
6 | Dance | Mega (10M+) | 3 | 1 | 152.0 |
7 | Education | Mega (10M+) | 3 | 1 | 16.0 |
8 | Fitness | Mega (10M+) | 3 | 1 | 16.6 |
9 | Gaming | Mega (10M+) | 3 | 1 | 111.0 |
10 | Illusions | Mega (10M+) | 3 | 1 | 25.0 |
11 | Lifestyle | Macro (5M–9.9M) | 3 | 1 | 8.7 |
12 | Philanthropy | Mega (10M+) | 3 | 1 | 274.0 |
13 | Sports | Mega (10M+) | 3 | 3 | 398.7 |
14 | Tech | Mid (1M–4.9M) | 3 | 1 | 1.2 |
15 | Travel | Mid (1M–4.9M) | 3 | 1 | 2.3 |
16 | Travel | Mega (10M+) | 3 | 1 | 20.0 |
6.Quick distributions with PROC FREQ
PROC FREQ DATA=work.influencers_worldwide ORDER=FREQ;
TABLES Platform*Collaboration_Tier / NOCOL NOPERCENT NOROW;
TITLE "Cross‑tab: Platform × Tier (counts only)";
RUN;
Output:
Cross-tab: Platform × Tier (counts only) |
|
|
7.Sorting for time‑series: PROC SORT
PROC SORT DATA=work.influencers_worldwide
OUT=work.influencers_by_launch
SORTSEQ=LINGUISTIC(Numeric_Collation=ON); /* multi‑lingual safety */
BY Launch_Date;
RUN;
proc print;run;
Output:
Obs | InfluencerID | Name | Age | Region | Country | Platform | Category | Followers_Millions | EngagementRate_Pct | Avg_Views_K | Launch_Y | Launch_M | Launch_D | Birth_Y | Birth_M | Birth_D | Launch_Date | Birth_Date | Collaboration_Tier |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4 | Zach King | 25 | States-UNI | United States | YOUTUBE | Illusions | 25.0 | 8.10 | 750.0 | 2008 | 1 | 15 | 1990 | 2 | 4 | 15JAN2008 | 04FEB1990 | Mega (10M+) |
2 | 7 | Dude Perfect | 27 | States-UNI | United States | YOUTUBE | Sports | 62.0 | 4.00 | 2800.0 | 2009 | 3 | 16 | 1988 | 5 | 16 | 16MAR2009 | 16MAY1988 | Mega (10M+) |
3 | 5 | PewDiePie | 25 | Sweden-SWE | Sweden | YOUTUBE | Gaming | 111.0 | 3.10 | 3000.0 | 2010 | 4 | 29 | 1989 | 10 | 24 | 29APR2010 | 24OCT1989 | Mega (10M+) |
4 | 3 | Huda Kattan | 31 | UAE-UAE | UAE | Beauty | 52.0 | 3.20 | 900.0 | 2010 | 7 | 10 | 1983 | 10 | 2 | 10JUL2010 | 02OCT1983 | Mega (10M+) | |
5 | 10 | Cristiano Ronaldo | 30 | Portugal-POR | Portugal | Sports | 630.0 | 2.80 | 8200.0 | 2012 | 2 | 14 | 1985 | 2 | 5 | 14FEB2012 | 05FEB1985 | Mega (10M+) | |
6 | 11 | MrBeast | 17 | States-UNI | United States | YOUTUBE | Philanthropy | 274.0 | 6.20 | 5000.0 | 2012 | 2 | 19 | 1998 | 5 | 7 | 19FEB2012 | 07MAY1998 | Mega (10M+) |
7 | 15 | Kayla Itsines | 24 | Australia-AUS | Australia | Fitness | 16.6 | 3.90 | 380.0 | 2012 | 3 | 24 | 1991 | 5 | 21 | 24MAR2012 | 21MAY1991 | Mega (10M+) | |
8 | 8 | NikkieTutorials | 21 | Netherlands-NET | Netherlands | Beauty | 19.0 | 4.50 | 550.0 | 2012 | 6 | 24 | 1994 | 3 | 2 | 24JUN2012 | 02MAR1994 | Mega (10M+) | |
9 | 9 | Lionel Messi | 28 | Argentina-ARG | Argentina | Sports | 504.0 | 2.70 | 7200.0 | 2013 | 5 | 1 | 1987 | 6 | 24 | 01MAY2013 | 24JUN1987 | Mega (10M+) | |
10 | 12 | Marie Kondo | 30 | Japan-JAP | Japan | Lifestyle | 8.7 | 4.10 | 200.0 | 2015 | 1 | 1 | 1984 | 10 | 9 | 01JAN2015 | 09OCT1984 | Macro (5M–9.9M) | |
11 | 14 | Yolanda Gampp | 38 | Canada-CAN | Canada | YOUTUBE | Baking | 5.4 | 9.00 | 220.0 | 2015 | 5 | 12 | 1977 | 7 | 21 | 12MAY2015 | 21JUL1977 | Macro (5M–9.9M) |
12 | 13 | Jay Shetty | 28 | Kingdom-UNI | United Kingdom | Education | 16.0 | 5.80 | 400.0 | 2016 | 3 | 5 | 1987 | 9 | 6 | 05MAR2016 | 06SEP1987 | Mega (10M+) | |
13 | 18 | Nuseir Yassin | 23 | Israel-ISR | Israel | Travel | 20.0 | 6.10 | 600.0 | 2016 | 4 | 9 | 1992 | 2 | 9 | 09APR2016 | 09FEB1992 | Mega (10M+) | |
14 | 16 | TravelMad World | 23 | India-IND | India | Travel | 2.3 | 6.50 | 120.0 | 2018 | 8 | 9 | 1992 | 8 | 10 | 09AUG2018 | 10AUG1992 | Mid (1M–4.9M) | |
15 | 6 | Charli D’Amelio | 11 | States-UNI | United States | TIKTOK | Dance | 152.0 | 5.20 | 2500.0 | 2019 | 6 | 30 | 2004 | 5 | 1 | 30JUN2019 | 01MAY2004 | Mega (10M+) |
16 | 1 | Addison Rae | 14 | States-UNI | United States | TIKTOK | Beauty | 88.9 | 4.70 | 1300.0 | 2019 | 7 | 14 | 2000 | 10 | 6 | 14JUL2019 | 06OCT2000 | Mega (10M+) |
17 | 17 | Najmul Cooking | 29 | Bangladesh-BAN | Bangladesh | Cooking | 3.1 | 10.20 | 95.0 | 2019 | 11 | 2 | 1985 | 11 | 5 | 02NOV2019 | 05NOV1985 | Mid (1M–4.9M) | |
18 | 2 | Khaby Lame | 15 | Italy-ITA | Italy | TIKTOK | Comedy | 162.0 | 7.50 | 2000.0 | 2020 | 3 | 15 | 2000 | 3 | 9 | 15MAR2020 | 09MAR2000 | Mega (10M+) |
19 | 20 | TechGirlNikki | 16 | Kenya-KEN | Kenya | YOUTUBE | Tech | 1.2 | 8.00 | 87.0 | 2020 | 9 | 18 | 1998 | 12 | 12 | 18SEP2020 | 12DEC1998 | Mid (1M–4.9M) |
20 | 19 | Macarena Achaga | 23 | Argentina-ARG | Argentina | TIKTOK | Comedy | 4.8 | 9.30 | 160.0 | 2021 | 1 | 1 | 1992 | 3 | 5 | 01JAN2021 | 05MAR1992 | Mid (1M–4.9M) |
8.Visual pulse: PROC SGPLOT
PROC SGPLOT DATA=work.influencers_worldwide;
SCATTER X=Followers_Millions Y=EngagementRate_Pct /
GROUP=Platform DATALABEL=Name;
YAXIS LABEL='Engagement Rate (%)';
XAXIS LABEL='Followers (Millions)';
TITLE "Followers vs. Engagement – which megastars defy the reach‑rate paradox?";
RUN;
Log:
NOTE: PROCEDURE SGPLOT used (Total process time):
real time 3.14 seconds
user cpu time 0.21 seconds
system cpu time 0.18 seconds
memory 10975.40k
OS Memory 28792.00k
Timestamp 14/09/2015 12:38:58 AM
Step Count 34 Switch Count 0
NOTE: Listing image output written to SGPlot1.png.
NOTE: There were 20 observations read from the data set WORK.INFLUENCERS_WORLDWIDE.
9.Relational power: PROC SQL for continent averages
PROC SQL;
SELECT CASE
WHEN Country IN ('United States','Canada') THEN 'North America'
WHEN Country IN ('Argentina','Brazil') THEN 'South America'
WHEN Country IN ('Italy','Portugal','Sweden','UAE',
'United Kingdom') THEN 'Europe'
WHEN Country IN ('Kenya') THEN 'Africa'
WHEN Country IN ('Japan','India','Bangladesh','Israel') THEN 'Asia'
ELSE 'Other'
END AS Continent,
COUNT(*) AS Num_Influencers,
ROUND(AVG(Followers_Millions),0.1) AS Avg_Millions_Followers FORMAT=6.1,
ROUND(AVG(EngagementRate_Pct),0.1) AS Avg_Engage_Pct FORMAT=5.1
FROM work.influencers_worldwide
GROUP BY Continent
ORDER BY Avg_Millions_Followers DESC;
QUIT;
Output:
Followers vs. Engagement – which megastars defy the reach-rate paradox? |
Continent | Num_Influencers | Avg_Millions_Followers | Avg_Engage_Pct |
---|---|---|---|
South America | 2 | 254.4 | 6.0 |
Europe | 5 | 194.2 | 4.5 |
North America | 6 | 101.2 | 6.2 |
Other | 2 | 17.8 | 4.2 |
Asia | 4 | 8.5 | 6.7 |
Africa | 1 | 1.2 | 8.0 |
10.Reusable automation: a macro for regional one‑pagers
%MACRO region_report(rgn);
%PUT NOTE: ===== Generating report for &rgn =====;
TITLE1 "Influencers in &rgn — Descriptive Snapshot";
PROC PRINT DATA=work.influencers_worldwide NOOBS;
WHERE UPCASE(Region) = "%UPCASE(&rgn)";
VAR Name Platform Category Followers_Millions EngagementRate_Pct;
RUN;
PROC MEANS DATA=work.influencers_worldwide MAXDEC=2;
WHERE UPCASE(Region) = "%UPCASE(&rgn)";
VAR Followers_Millions EngagementRate_Pct Avg_Views_K;
TITLE2 "Key statistics for &rgn";
RUN;
PROC FREQ DATA=work.influencers_worldwide;
WHERE UPCASE(Region) = "%UPCASE(&rgn)";
TABLES Category / NOPERCENT NOCOL;
TITLE2 "Category spread for &rgn";
RUN;
%MEND;
%region_report(States-UNI);
Output:
Influencers in States-UNI — Descriptive Snapshot |
Name | Platform | Category | Followers_Millions | EngagementRate_Pct |
---|---|---|---|---|
Addison Rae | TIKTOK | Beauty | 88.9 | 4.70 |
Zach King | YOUTUBE | Illusions | 25.0 | 8.10 |
Charli D’Amelio | TIKTOK | Dance | 152.0 | 5.20 |
Dude Perfect | YOUTUBE | Sports | 62.0 | 4.00 |
MrBeast | YOUTUBE | Philanthropy | 274.0 | 6.20 |
Influencers in States-UNI — Descriptive Snapshot |
Key statistics for States-UNI |
Variable | N | Mean | Std Dev | Minimum | Maximum | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
|
|
|
Influencers in States-UNI — Descriptive Snapshot |
Category spread for States-UNI |
Category | Frequency | Cumulative Frequency |
---|---|---|
Beauty | 1 | 1 |
Dance | 1 | 2 |
Illusions | 1 | 3 |
Philanthropy | 1 | 4 |
Sports | 1 | 5 |
%region_report(Argentina-ARG);
Output:
Influencers in Argentina-ARG — Descriptive Snapshot |
Name | Platform | Category | Followers_Millions | EngagementRate_Pct |
---|---|---|---|---|
Lionel Messi | Sports | 504.0 | 2.70 | |
Macarena Achaga | TIKTOK | Comedy | 4.8 | 9.30 |
Influencers in Argentina-ARG — Descriptive Snapshot |
Key statistics for Argentina-ARG |
Variable | N | Mean | Std Dev | Minimum | Maximum | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
|
|
|
Influencers in Argentina-ARG — Descriptive Snapshot |
Category spread for Argentina-ARG |
Category | Frequency | Cumulative Frequency |
---|---|---|
Comedy | 1 | 1 |
Sports | 1 | 2 |
11.Exporting
PROC EXPORT DATA=work.mean_by_tier
OUTFILE="influencer_mean_by_tier.csv"
DBMS=CSV REPLACE;
RUN;
- Get link
- X
- Other Apps
Comments
Post a Comment