252.REAL-WORLD DAL PRICE TREND AND YEAR-WISE COMPARISON IN INDIA (2014–2025) USING PROC SORT | PROC TRANSPOSE | PROC PRINT | PROC MEANS | PROC FREQ | PROC SQL | PROC SUMMARY IN SAS

REAL-WORLD DAL PRICE TREND AND YEAR-WISE COMPARISON IN INDIA (2014–2025) USING PROC SORT | PROC TRANSPOSE | PROC PRINT | PROC MEANS | PROC FREQ | PROC SQL | PROC SUMMARY IN SAS

/*Creating a dataset for different types of dals (pulses) in India from 2014–2025*/

Creation Of The Dataset

option nocenter;

 data dal_market_india;

    length Dal_Name $20 Main_Producing_State $20 Rainfall_Impact $10 Price_Category $10;

    input Dal_ID Year Dal_Name $ Average_Price_Per_Kg Annual_Consumption_Tonnes 

          Main_Producing_State $ Import_Quantity_Tonnes Export_Quantity_Tonnes Rainfall_Impact $ Price_Category $;

    datalines;

1 2014 Toor_Dal 75 450000 Maharashtra 20000 15000 Medium Medium

2 2014 Moong_Dal 90 320000 Rajasthan 15000 10000 Low High

3 2014 Masoor_Dal 65 250000 Madhya_Pradesh 30000 5000 Medium Medium

4 2014 Urad_Dal 85 280000 Andhra_Pradesh 10000 8000 Low High

5 2014 Chana_Dal 60 500000 Maharashtra 25000 20000 Medium Medium

6 2015 Toor_Dal 80 470000 Karnataka 22000 17000 Medium Medium

7 2015 Moong_Dal 95 340000 Rajasthan 18000 12000 Low High

8 2015 Masoor_Dal 70 260000 Uttar_Pradesh 32000 6000 High Medium

9 2015 Urad_Dal 88 290000 Andhra_Pradesh 12000 8500 Low High

10 2015 Chana_Dal 62 510000 Maharashtra 27000 21000 Medium Medium

11 2016 Toor_Dal 120 440000 Maharashtra 25000 18000 Low High

12 2016 Moong_Dal 98 350000 Rajasthan 19000 13000 Low High

13 2016 Masoor_Dal 72 270000 Madhya_Pradesh 33000 7000 High Medium

14 2016 Urad_Dal 95 295000 Andhra_Pradesh 14000 9000 Low High

15 2016 Chana_Dal 68 520000 Maharashtra 29000 22000 Medium Medium

16 2017 Toor_Dal 85 480000 Karnataka 20000 16000 High Medium

17 2017 Moong_Dal 92 360000 Rajasthan 15000 11000 Medium High

18 2017 Masoor_Dal 75 280000 Uttar_Pradesh 34000 7500 High Medium

19 2017 Urad_Dal 90 300000 Andhra_Pradesh 15000 9500 Low High

20 2017 Chana_Dal 65 530000 Maharashtra 28000 23000 Medium Medium

21 2018 Toor_Dal 88 490000 Maharashtra 21000 17000 High Medium

22 2018 Moong_Dal 94 370000 Rajasthan 16000 12000 Medium High

23 2018 Masoor_Dal 78 290000 Madhya_Pradesh 35000 8000 High Medium

24 2018 Urad_Dal 92 310000 Andhra_Pradesh 16000 9700 Low High

25 2018 Chana_Dal 70 540000 Maharashtra 30000 24000 Medium Medium

26 2019 Toor_Dal 95 500000 Karnataka 23000 17500 Low High

27 2019 Moong_Dal 97 380000 Rajasthan 17000 13000 Medium High

28 2019 Masoor_Dal 80 300000 Uttar_Pradesh 36000 8500 High Medium

29 2019 Urad_Dal 96 320000 Andhra_Pradesh 17000 9800 Low High

30 2019 Chana_Dal 72 550000 Maharashtra 31000 25000 Medium Medium

31 2020 Toor_Dal 100 510000 Maharashtra 24000 18000 Low High

32 2020 Moong_Dal 99 390000 Rajasthan 18000 13500 Low High

33 2020 Masoor_Dal 82 310000 Madhya_Pradesh 37000 9000 High Medium

34 2020 Urad_Dal 98 330000 Andhra_Pradesh 18000 9900 Low High

35 2020 Chana_Dal 75 560000 Maharashtra 32000 26000 Medium Medium

;

run;

proc print;run;

Output:

ObsDal_NameMain_Producing_StateRainfall_ImpactPrice_CategoryDal_IDYearAverage_Price_Per_KgAnnual_Consumption_TonnesImport_Quantity_TonnesExport_Quantity_Tonnes
1Toor_DalMaharashtraMediumMedium12014754500002000015000
2Moong_DalRajasthanLowHigh22014903200001500010000
3Masoor_DalMadhya_PradeshMediumMedium3201465250000300005000
4Urad_DalAndhra_PradeshLowHigh4201485280000100008000
5Chana_DalMaharashtraMediumMedium52014605000002500020000
6Toor_DalKarnatakaMediumMedium62015804700002200017000
7Moong_DalRajasthanLowHigh72015953400001800012000
8Masoor_DalUttar_PradeshHighMedium8201570260000320006000
9Urad_DalAndhra_PradeshLowHigh9201588290000120008500
10Chana_DalMaharashtraMediumMedium102015625100002700021000
11Toor_DalMaharashtraLowHigh1120161204400002500018000
12Moong_DalRajasthanLowHigh122016983500001900013000
13Masoor_DalMadhya_PradeshHighMedium13201672270000330007000
14Urad_DalAndhra_PradeshLowHigh14201695295000140009000
15Chana_DalMaharashtraMediumMedium152016685200002900022000
16Toor_DalKarnatakaHighMedium162017854800002000016000
17Moong_DalRajasthanMediumHigh172017923600001500011000
18Masoor_DalUttar_PradeshHighMedium18201775280000340007500
19Urad_DalAndhra_PradeshLowHigh19201790300000150009500
20Chana_DalMaharashtraMediumMedium202017655300002800023000
21Toor_DalMaharashtraHighMedium212018884900002100017000
22Moong_DalRajasthanMediumHigh222018943700001600012000
23Masoor_DalMadhya_PradeshHighMedium23201878290000350008000
24Urad_DalAndhra_PradeshLowHigh24201892310000160009700
25Chana_DalMaharashtraMediumMedium252018705400003000024000
26Toor_DalKarnatakaLowHigh262019955000002300017500
27Moong_DalRajasthanMediumHigh272019973800001700013000
28Masoor_DalUttar_PradeshHighMedium28201980300000360008500
29Urad_DalAndhra_PradeshLowHigh29201996320000170009800
30Chana_DalMaharashtraMediumMedium302019725500003100025000
31Toor_DalMaharashtraLowHigh3120201005100002400018000
32Moong_DalRajasthanLowHigh322020993900001800013500
33Masoor_DalMadhya_PradeshHighMedium33202082310000370009000
34Urad_DalAndhra_PradeshLowHigh34202098330000180009900
35Chana_DalMaharashtraMediumMedium352020755600003200026000


1. PROC PRINT – Display Dataset

proc print data=dal_market_india;

    title "Real-World Dal Price & Consumption Dataset (2014–2025)";

run;

Output:

Real-World Dal Price & Consumption Dataset (2014–2025)

ObsDal_NameMain_Producing_StateRainfall_ImpactPrice_CategoryDal_IDYearAverage_Price_Per_KgAnnual_Consumption_TonnesImport_Quantity_TonnesExport_Quantity_Tonnes
1Toor_DalMaharashtraMediumMedium12014754500002000015000
2Moong_DalRajasthanLowHigh22014903200001500010000
3Masoor_DalMadhya_PradeshMediumMedium3201465250000300005000
4Urad_DalAndhra_PradeshLowHigh4201485280000100008000
5Chana_DalMaharashtraMediumMedium52014605000002500020000
6Toor_DalKarnatakaMediumMedium62015804700002200017000
7Moong_DalRajasthanLowHigh72015953400001800012000
8Masoor_DalUttar_PradeshHighMedium8201570260000320006000
9Urad_DalAndhra_PradeshLowHigh9201588290000120008500
10Chana_DalMaharashtraMediumMedium102015625100002700021000
11Toor_DalMaharashtraLowHigh1120161204400002500018000
12Moong_DalRajasthanLowHigh122016983500001900013000
13Masoor_DalMadhya_PradeshHighMedium13201672270000330007000
14Urad_DalAndhra_PradeshLowHigh14201695295000140009000
15Chana_DalMaharashtraMediumMedium152016685200002900022000
16Toor_DalKarnatakaHighMedium162017854800002000016000
17Moong_DalRajasthanMediumHigh172017923600001500011000
18Masoor_DalUttar_PradeshHighMedium18201775280000340007500
19Urad_DalAndhra_PradeshLowHigh19201790300000150009500
20Chana_DalMaharashtraMediumMedium202017655300002800023000
21Toor_DalMaharashtraHighMedium212018884900002100017000
22Moong_DalRajasthanMediumHigh222018943700001600012000
23Masoor_DalMadhya_PradeshHighMedium23201878290000350008000
24Urad_DalAndhra_PradeshLowHigh24201892310000160009700
25Chana_DalMaharashtraMediumMedium252018705400003000024000
26Toor_DalKarnatakaLowHigh262019955000002300017500
27Moong_DalRajasthanMediumHigh272019973800001700013000
28Masoor_DalUttar_PradeshHighMedium28201980300000360008500
29Urad_DalAndhra_PradeshLowHigh29201996320000170009800
30Chana_DalMaharashtraMediumMedium302019725500003100025000
31Toor_DalMaharashtraLowHigh3120201005100002400018000
32Moong_DalRajasthanLowHigh322020993900001800013500
33Masoor_DalMadhya_PradeshHighMedium33202082310000370009000
34Urad_DalAndhra_PradeshLowHigh34202098330000180009900
35Chana_DalMaharashtraMediumMedium352020755600003200026000

2. PROC SORT – Sort Data by Dal_Name & Year

proc sort data=dal_market_india out=sorted_dal;

    by Dal_Name Year;

run;

proc print data=sorted_dal;

   title "According To The Dal Name and Year";

run;

Output:

According To The Dal Name and Year

ObsDal_NameMain_Producing_StateRainfall_ImpactPrice_CategoryDal_IDYearAverage_Price_Per_KgAnnual_Consumption_TonnesImport_Quantity_TonnesExport_Quantity_Tonnes
1Chana_DalMaharashtraMediumMedium52014605000002500020000
2Chana_DalMaharashtraMediumMedium102015625100002700021000
3Chana_DalMaharashtraMediumMedium152016685200002900022000
4Chana_DalMaharashtraMediumMedium202017655300002800023000
5Chana_DalMaharashtraMediumMedium252018705400003000024000
6Chana_DalMaharashtraMediumMedium302019725500003100025000
7Chana_DalMaharashtraMediumMedium352020755600003200026000
8Masoor_DalMadhya_PradeshMediumMedium3201465250000300005000
9Masoor_DalUttar_PradeshHighMedium8201570260000320006000
10Masoor_DalMadhya_PradeshHighMedium13201672270000330007000
11Masoor_DalUttar_PradeshHighMedium18201775280000340007500
12Masoor_DalMadhya_PradeshHighMedium23201878290000350008000
13Masoor_DalUttar_PradeshHighMedium28201980300000360008500
14Masoor_DalMadhya_PradeshHighMedium33202082310000370009000
15Moong_DalRajasthanLowHigh22014903200001500010000
16Moong_DalRajasthanLowHigh72015953400001800012000
17Moong_DalRajasthanLowHigh122016983500001900013000
18Moong_DalRajasthanMediumHigh172017923600001500011000
19Moong_DalRajasthanMediumHigh222018943700001600012000
20Moong_DalRajasthanMediumHigh272019973800001700013000
21Moong_DalRajasthanLowHigh322020993900001800013500
22Toor_DalMaharashtraMediumMedium12014754500002000015000
23Toor_DalKarnatakaMediumMedium62015804700002200017000
24Toor_DalMaharashtraLowHigh1120161204400002500018000
25Toor_DalKarnatakaHighMedium162017854800002000016000
26Toor_DalMaharashtraHighMedium212018884900002100017000
27Toor_DalKarnatakaLowHigh262019955000002300017500
28Toor_DalMaharashtraLowHigh3120201005100002400018000
29Urad_DalAndhra_PradeshLowHigh4201485280000100008000
30Urad_DalAndhra_PradeshLowHigh9201588290000120008500
31Urad_DalAndhra_PradeshLowHigh14201695295000140009000
32Urad_DalAndhra_PradeshLowHigh19201790300000150009500
33Urad_DalAndhra_PradeshLowHigh24201892310000160009700
34Urad_DalAndhra_PradeshLowHigh29201996320000170009800
35Urad_DalAndhra_PradeshLowHigh34202098330000180009900

3. PROC MEANS – Price & Consumption Statistics

proc means data=dal_market_india mean min max std;

    var Average_Price_Per_Kg Annual_Consumption_Tonnes Import_Quantity_Tonnes          Export_Quantity_Tonnes;

    class Dal_Name;

    title "Statistical Summary of Dal Prices & Quantities";

run;

Output:

Statistical Summary of Dal Prices & Quantities

The MEANS Procedure

Dal_NameN ObsVariableMeanMinimumMaximumStd Dev
Chana_Dal7
Average_Price_Per_Kg
Annual_Consumption_Tonnes
Import_Quantity_Tonnes
Export_Quantity_Tonnes
67.4285714
530000.00
28857.14
23000.00
60.0000000
500000.00
25000.00
20000.00
75.0000000
560000.00
32000.00
26000.00
5.4116277
21602.47
2410.30
2160.25
Masoor_Dal7
Average_Price_Per_Kg
Annual_Consumption_Tonnes
Import_Quantity_Tonnes
Export_Quantity_Tonnes
74.5714286
280000.00
33857.14
7285.71
65.0000000
250000.00
30000.00
5000.00
82.0000000
310000.00
37000.00
9000.00
5.9960304
21602.47
2410.30
1410.00
Moong_Dal7
Average_Price_Per_Kg
Annual_Consumption_Tonnes
Import_Quantity_Tonnes
Export_Quantity_Tonnes
95.0000000
358571.43
16857.14
12071.43
90.0000000
320000.00
15000.00
10000.00
99.0000000
390000.00
19000.00
13500.00
3.2659863
24102.95
1573.59
1239.24
Toor_Dal7
Average_Price_Per_Kg
Annual_Consumption_Tonnes
Import_Quantity_Tonnes
Export_Quantity_Tonnes
91.8571429
477142.86
22142.86
16928.57
75.0000000
440000.00
20000.00
15000.00
120.0000000
510000.00
25000.00
18000.00
15.0269599
25634.80
1951.80
1096.53
Urad_Dal7
Average_Price_Per_Kg
Annual_Consumption_Tonnes
Import_Quantity_Tonnes
Export_Quantity_Tonnes
92.0000000
303571.43
14571.43
9200.00
85.0000000
280000.00
10000.00
8000.00
98.0000000
330000.00
18000.00
9900.00
4.6547467
17491.49
2820.00
725.7180352

4. PROC FREQ – Frequency of Rainfall Impact

proc freq data=dal_market_india;

    tables Rainfall_Impact*Dal_Name / nocol norow nopercent;

    title "Rainfall Impact Distribution Across Dal Types";

run;

Output:

Rainfall Impact Distribution Across Dal Types

The FREQ Procedure

Frequency
Table of Rainfall_Impact by Dal_Name
Rainfall_ImpactDal_Name
Chana_DalMasoor_DalMoong_DalToor_DalUrad_DalTotal
High
0
6
0
2
0
8
Low
0
0
4
3
7
14
Medium
7
1
3
2
0
13
Total
7
7
7
7
7
35

5. PROC SQL – Top 3 Most Expensive Dal Years

proc sql outobs=3;

    title "Top 3 Most Expensive Dal Prices by Year";

    select Dal_Name, Year, Average_Price_Per_Kg

    from dal_market_india

    order by Average_Price_Per_Kg desc;

quit;

Output:

Top 3 Most Expensive Dal Prices by Year

Dal_NameYearAverage_Price_Per_Kg
Toor_Dal2016120
Toor_Dal2020100
Moong_Dal202099

6. PROC SUMMARY – Yearly Aggregation

proc summary data=dal_market_india nway;

    class Year;

    var Average_Price_Per_Kg Annual_Consumption_Tonnes;

    output out=yearly_summary mean=Avg_Price Mean_Consumption;

run;


proc print data=yearly_summary;

    title "Yearly Average Price & Consumption of All Dals";

run;

Output:

Yearly Average Price & Consumption of All Dals

ObsYear_TYPE__FREQ_Avg_PriceMean_Consumption
120141575.0360000
220151579.0374000
320161590.6375000
420171581.4390000
520181584.4400000
620191588.0410000
720201590.8420000

7. MACRO – Generate Report for a Specific Dal

%macro dal_report(dal=);

    proc sql;

        title "Detailed Report for &dal (2014–2025)";

        select * from dal_market_india

        where Dal_Name="&dal"

        order by Year;

    quit;

%mend;


%dal_report(dal=Toor_Dal);

Output:

Detailed Report for Toor_Dal (2014–2025)

Dal_NameMain_Producing_StateRainfall_ImpactPrice_CategoryDal_IDYearAverage_Price_Per_KgAnnual_Consumption_TonnesImport_Quantity_TonnesExport_Quantity_Tonnes
Toor_DalMaharashtraMediumMedium12014754500002000015000
Toor_DalKarnatakaMediumMedium62015804700002200017000
Toor_DalMaharashtraLowHigh1120161204400002500018000
Toor_DalKarnatakaHighMedium162017854800002000016000
Toor_DalMaharashtraHighMedium212018884900002100017000
Toor_DalKarnatakaLowHigh262019955000002300017500
Toor_DalMaharashtraLowHigh3120201005100002400018000

%dal_report(dal=Moong_Dal);

Output:

Detailed Report for Moong_Dal (2014–2025)

Dal_NameMain_Producing_StateRainfall_ImpactPrice_CategoryDal_IDYearAverage_Price_Per_KgAnnual_Consumption_TonnesImport_Quantity_TonnesExport_Quantity_Tonnes
Moong_DalRajasthanLowHigh22014903200001500010000
Moong_DalRajasthanLowHigh72015953400001800012000
Moong_DalRajasthanLowHigh122016983500001900013000
Moong_DalRajasthanMediumHigh172017923600001500011000
Moong_DalRajasthanMediumHigh222018943700001600012000
Moong_DalRajasthanMediumHigh272019973800001700013000
Moong_DalRajasthanLowHigh322020993900001800013500

8. PROC TRANSPOSE - Comparision Of Prices 

proc sort data=dal_market_india out=dal_sorted;

    by Dal_Name Year;

run;

proc transpose data=dal_sorted out=dal_price_trend(drop=_NAME_) prefix=Year_;

    by Dal_Name; /* Dals in rows */

    id Year; /* Years as columns */

    var Average_Price_Per_Kg; /* Price values */

run;


proc print data=dal_price_trend;

    title "Dal Price Trend (2014–2025) - Years as Columns, Dals as Rows";

run;

Output:

Dal Price Trend (2014–2025) - Years as Columns, Dals as Rows

ObsDal_NameYear_2014Year_2015Year_2016Year_2017Year_2018Year_2019Year_2020
1Chana_Dal60626865707275
2Masoor_Dal65707275788082
3Moong_Dal90959892949799
4Toor_Dal7580120858895100
5Urad_Dal85889590929698



To Visit My Previous E-Commerce Dataset:Click Here
To Visit My Previous Length,Input,Retain Statements:Click Here
To Visit My Previous Urban Traffic Dataset:Click Here
To Visit My Previous Home Energy Consumption Dataset:Click Here





--->PLEASE FOLLOW OUR BLOG FOR MORE INFORMATION.
--->PLEASE DO COMMENTS AND SHARE OUR BLOG.

PLEASE FOLLOW OUR TELEGRAM CHANNEL CLICK HERE

PLEASE FOLLOW OUR FACEBOOK PAGE  CLICK HERE

PLEASE FOLLOW OUR INSTAGRAM PAGE CLICK HERE


Comments

Popular posts from this blog

397.If a satellite has excellent signal strength but very high latency, can it still deliver good quality communication? Why or why not?A Sas Study

383.Which Pharma Distributors Are High-Risk? Can SAS Detect Delays, Temperature Violations, and Fraud?

379.CAN SAS DELIVER END-TO-END TLF (TABLES, LISTINGS, AND FIGURES) FOR INSURANCE CLAIMS ANALYSIS?