252.REAL-WORLD DAL PRICE TREND AND YEAR-WISE COMPARISON IN INDIA (2014–2025) USING PROC SORT | PROC TRANSPOSE | PROC PRINT | PROC MEANS | PROC FREQ | PROC SQL | PROC SUMMARY IN SAS
- Get link
- X
- Other Apps
REAL-WORLD DAL PRICE TREND AND YEAR-WISE COMPARISON IN INDIA (2014–2025) USING PROC SORT | PROC TRANSPOSE | PROC PRINT | PROC MEANS | PROC FREQ | PROC SQL | PROC SUMMARY IN SAS
/*Creating a dataset for different types of dals (pulses) in India from 2014–2025*/
Creation Of The Dataset
option nocenter;
data dal_market_india;
length Dal_Name $20 Main_Producing_State $20 Rainfall_Impact $10 Price_Category $10;
input Dal_ID Year Dal_Name $ Average_Price_Per_Kg Annual_Consumption_Tonnes
Main_Producing_State $ Import_Quantity_Tonnes Export_Quantity_Tonnes Rainfall_Impact $ Price_Category $;
datalines;
1 2014 Toor_Dal 75 450000 Maharashtra 20000 15000 Medium Medium
2 2014 Moong_Dal 90 320000 Rajasthan 15000 10000 Low High
3 2014 Masoor_Dal 65 250000 Madhya_Pradesh 30000 5000 Medium Medium
4 2014 Urad_Dal 85 280000 Andhra_Pradesh 10000 8000 Low High
5 2014 Chana_Dal 60 500000 Maharashtra 25000 20000 Medium Medium
6 2015 Toor_Dal 80 470000 Karnataka 22000 17000 Medium Medium
7 2015 Moong_Dal 95 340000 Rajasthan 18000 12000 Low High
8 2015 Masoor_Dal 70 260000 Uttar_Pradesh 32000 6000 High Medium
9 2015 Urad_Dal 88 290000 Andhra_Pradesh 12000 8500 Low High
10 2015 Chana_Dal 62 510000 Maharashtra 27000 21000 Medium Medium
11 2016 Toor_Dal 120 440000 Maharashtra 25000 18000 Low High
12 2016 Moong_Dal 98 350000 Rajasthan 19000 13000 Low High
13 2016 Masoor_Dal 72 270000 Madhya_Pradesh 33000 7000 High Medium
14 2016 Urad_Dal 95 295000 Andhra_Pradesh 14000 9000 Low High
15 2016 Chana_Dal 68 520000 Maharashtra 29000 22000 Medium Medium
16 2017 Toor_Dal 85 480000 Karnataka 20000 16000 High Medium
17 2017 Moong_Dal 92 360000 Rajasthan 15000 11000 Medium High
18 2017 Masoor_Dal 75 280000 Uttar_Pradesh 34000 7500 High Medium
19 2017 Urad_Dal 90 300000 Andhra_Pradesh 15000 9500 Low High
20 2017 Chana_Dal 65 530000 Maharashtra 28000 23000 Medium Medium
21 2018 Toor_Dal 88 490000 Maharashtra 21000 17000 High Medium
22 2018 Moong_Dal 94 370000 Rajasthan 16000 12000 Medium High
23 2018 Masoor_Dal 78 290000 Madhya_Pradesh 35000 8000 High Medium
24 2018 Urad_Dal 92 310000 Andhra_Pradesh 16000 9700 Low High
25 2018 Chana_Dal 70 540000 Maharashtra 30000 24000 Medium Medium
26 2019 Toor_Dal 95 500000 Karnataka 23000 17500 Low High
27 2019 Moong_Dal 97 380000 Rajasthan 17000 13000 Medium High
28 2019 Masoor_Dal 80 300000 Uttar_Pradesh 36000 8500 High Medium
29 2019 Urad_Dal 96 320000 Andhra_Pradesh 17000 9800 Low High
30 2019 Chana_Dal 72 550000 Maharashtra 31000 25000 Medium Medium
31 2020 Toor_Dal 100 510000 Maharashtra 24000 18000 Low High
32 2020 Moong_Dal 99 390000 Rajasthan 18000 13500 Low High
33 2020 Masoor_Dal 82 310000 Madhya_Pradesh 37000 9000 High Medium
34 2020 Urad_Dal 98 330000 Andhra_Pradesh 18000 9900 Low High
35 2020 Chana_Dal 75 560000 Maharashtra 32000 26000 Medium Medium
;
run;
proc print;run;
Output:
Obs | Dal_Name | Main_Producing_State | Rainfall_Impact | Price_Category | Dal_ID | Year | Average_Price_Per_Kg | Annual_Consumption_Tonnes | Import_Quantity_Tonnes | Export_Quantity_Tonnes |
---|---|---|---|---|---|---|---|---|---|---|
1 | Toor_Dal | Maharashtra | Medium | Medium | 1 | 2014 | 75 | 450000 | 20000 | 15000 |
2 | Moong_Dal | Rajasthan | Low | High | 2 | 2014 | 90 | 320000 | 15000 | 10000 |
3 | Masoor_Dal | Madhya_Pradesh | Medium | Medium | 3 | 2014 | 65 | 250000 | 30000 | 5000 |
4 | Urad_Dal | Andhra_Pradesh | Low | High | 4 | 2014 | 85 | 280000 | 10000 | 8000 |
5 | Chana_Dal | Maharashtra | Medium | Medium | 5 | 2014 | 60 | 500000 | 25000 | 20000 |
6 | Toor_Dal | Karnataka | Medium | Medium | 6 | 2015 | 80 | 470000 | 22000 | 17000 |
7 | Moong_Dal | Rajasthan | Low | High | 7 | 2015 | 95 | 340000 | 18000 | 12000 |
8 | Masoor_Dal | Uttar_Pradesh | High | Medium | 8 | 2015 | 70 | 260000 | 32000 | 6000 |
9 | Urad_Dal | Andhra_Pradesh | Low | High | 9 | 2015 | 88 | 290000 | 12000 | 8500 |
10 | Chana_Dal | Maharashtra | Medium | Medium | 10 | 2015 | 62 | 510000 | 27000 | 21000 |
11 | Toor_Dal | Maharashtra | Low | High | 11 | 2016 | 120 | 440000 | 25000 | 18000 |
12 | Moong_Dal | Rajasthan | Low | High | 12 | 2016 | 98 | 350000 | 19000 | 13000 |
13 | Masoor_Dal | Madhya_Pradesh | High | Medium | 13 | 2016 | 72 | 270000 | 33000 | 7000 |
14 | Urad_Dal | Andhra_Pradesh | Low | High | 14 | 2016 | 95 | 295000 | 14000 | 9000 |
15 | Chana_Dal | Maharashtra | Medium | Medium | 15 | 2016 | 68 | 520000 | 29000 | 22000 |
16 | Toor_Dal | Karnataka | High | Medium | 16 | 2017 | 85 | 480000 | 20000 | 16000 |
17 | Moong_Dal | Rajasthan | Medium | High | 17 | 2017 | 92 | 360000 | 15000 | 11000 |
18 | Masoor_Dal | Uttar_Pradesh | High | Medium | 18 | 2017 | 75 | 280000 | 34000 | 7500 |
19 | Urad_Dal | Andhra_Pradesh | Low | High | 19 | 2017 | 90 | 300000 | 15000 | 9500 |
20 | Chana_Dal | Maharashtra | Medium | Medium | 20 | 2017 | 65 | 530000 | 28000 | 23000 |
21 | Toor_Dal | Maharashtra | High | Medium | 21 | 2018 | 88 | 490000 | 21000 | 17000 |
22 | Moong_Dal | Rajasthan | Medium | High | 22 | 2018 | 94 | 370000 | 16000 | 12000 |
23 | Masoor_Dal | Madhya_Pradesh | High | Medium | 23 | 2018 | 78 | 290000 | 35000 | 8000 |
24 | Urad_Dal | Andhra_Pradesh | Low | High | 24 | 2018 | 92 | 310000 | 16000 | 9700 |
25 | Chana_Dal | Maharashtra | Medium | Medium | 25 | 2018 | 70 | 540000 | 30000 | 24000 |
26 | Toor_Dal | Karnataka | Low | High | 26 | 2019 | 95 | 500000 | 23000 | 17500 |
27 | Moong_Dal | Rajasthan | Medium | High | 27 | 2019 | 97 | 380000 | 17000 | 13000 |
28 | Masoor_Dal | Uttar_Pradesh | High | Medium | 28 | 2019 | 80 | 300000 | 36000 | 8500 |
29 | Urad_Dal | Andhra_Pradesh | Low | High | 29 | 2019 | 96 | 320000 | 17000 | 9800 |
30 | Chana_Dal | Maharashtra | Medium | Medium | 30 | 2019 | 72 | 550000 | 31000 | 25000 |
31 | Toor_Dal | Maharashtra | Low | High | 31 | 2020 | 100 | 510000 | 24000 | 18000 |
32 | Moong_Dal | Rajasthan | Low | High | 32 | 2020 | 99 | 390000 | 18000 | 13500 |
33 | Masoor_Dal | Madhya_Pradesh | High | Medium | 33 | 2020 | 82 | 310000 | 37000 | 9000 |
34 | Urad_Dal | Andhra_Pradesh | Low | High | 34 | 2020 | 98 | 330000 | 18000 | 9900 |
35 | Chana_Dal | Maharashtra | Medium | Medium | 35 | 2020 | 75 | 560000 | 32000 | 26000 |
1. PROC PRINT – Display Dataset
proc print data=dal_market_india;
title "Real-World Dal Price & Consumption Dataset (2014–2025)";
run;
Output:
Real-World Dal Price & Consumption Dataset (2014–2025)
Obs | Dal_Name | Main_Producing_State | Rainfall_Impact | Price_Category | Dal_ID | Year | Average_Price_Per_Kg | Annual_Consumption_Tonnes | Import_Quantity_Tonnes | Export_Quantity_Tonnes |
---|---|---|---|---|---|---|---|---|---|---|
1 | Toor_Dal | Maharashtra | Medium | Medium | 1 | 2014 | 75 | 450000 | 20000 | 15000 |
2 | Moong_Dal | Rajasthan | Low | High | 2 | 2014 | 90 | 320000 | 15000 | 10000 |
3 | Masoor_Dal | Madhya_Pradesh | Medium | Medium | 3 | 2014 | 65 | 250000 | 30000 | 5000 |
4 | Urad_Dal | Andhra_Pradesh | Low | High | 4 | 2014 | 85 | 280000 | 10000 | 8000 |
5 | Chana_Dal | Maharashtra | Medium | Medium | 5 | 2014 | 60 | 500000 | 25000 | 20000 |
6 | Toor_Dal | Karnataka | Medium | Medium | 6 | 2015 | 80 | 470000 | 22000 | 17000 |
7 | Moong_Dal | Rajasthan | Low | High | 7 | 2015 | 95 | 340000 | 18000 | 12000 |
8 | Masoor_Dal | Uttar_Pradesh | High | Medium | 8 | 2015 | 70 | 260000 | 32000 | 6000 |
9 | Urad_Dal | Andhra_Pradesh | Low | High | 9 | 2015 | 88 | 290000 | 12000 | 8500 |
10 | Chana_Dal | Maharashtra | Medium | Medium | 10 | 2015 | 62 | 510000 | 27000 | 21000 |
11 | Toor_Dal | Maharashtra | Low | High | 11 | 2016 | 120 | 440000 | 25000 | 18000 |
12 | Moong_Dal | Rajasthan | Low | High | 12 | 2016 | 98 | 350000 | 19000 | 13000 |
13 | Masoor_Dal | Madhya_Pradesh | High | Medium | 13 | 2016 | 72 | 270000 | 33000 | 7000 |
14 | Urad_Dal | Andhra_Pradesh | Low | High | 14 | 2016 | 95 | 295000 | 14000 | 9000 |
15 | Chana_Dal | Maharashtra | Medium | Medium | 15 | 2016 | 68 | 520000 | 29000 | 22000 |
16 | Toor_Dal | Karnataka | High | Medium | 16 | 2017 | 85 | 480000 | 20000 | 16000 |
17 | Moong_Dal | Rajasthan | Medium | High | 17 | 2017 | 92 | 360000 | 15000 | 11000 |
18 | Masoor_Dal | Uttar_Pradesh | High | Medium | 18 | 2017 | 75 | 280000 | 34000 | 7500 |
19 | Urad_Dal | Andhra_Pradesh | Low | High | 19 | 2017 | 90 | 300000 | 15000 | 9500 |
20 | Chana_Dal | Maharashtra | Medium | Medium | 20 | 2017 | 65 | 530000 | 28000 | 23000 |
21 | Toor_Dal | Maharashtra | High | Medium | 21 | 2018 | 88 | 490000 | 21000 | 17000 |
22 | Moong_Dal | Rajasthan | Medium | High | 22 | 2018 | 94 | 370000 | 16000 | 12000 |
23 | Masoor_Dal | Madhya_Pradesh | High | Medium | 23 | 2018 | 78 | 290000 | 35000 | 8000 |
24 | Urad_Dal | Andhra_Pradesh | Low | High | 24 | 2018 | 92 | 310000 | 16000 | 9700 |
25 | Chana_Dal | Maharashtra | Medium | Medium | 25 | 2018 | 70 | 540000 | 30000 | 24000 |
26 | Toor_Dal | Karnataka | Low | High | 26 | 2019 | 95 | 500000 | 23000 | 17500 |
27 | Moong_Dal | Rajasthan | Medium | High | 27 | 2019 | 97 | 380000 | 17000 | 13000 |
28 | Masoor_Dal | Uttar_Pradesh | High | Medium | 28 | 2019 | 80 | 300000 | 36000 | 8500 |
29 | Urad_Dal | Andhra_Pradesh | Low | High | 29 | 2019 | 96 | 320000 | 17000 | 9800 |
30 | Chana_Dal | Maharashtra | Medium | Medium | 30 | 2019 | 72 | 550000 | 31000 | 25000 |
31 | Toor_Dal | Maharashtra | Low | High | 31 | 2020 | 100 | 510000 | 24000 | 18000 |
32 | Moong_Dal | Rajasthan | Low | High | 32 | 2020 | 99 | 390000 | 18000 | 13500 |
33 | Masoor_Dal | Madhya_Pradesh | High | Medium | 33 | 2020 | 82 | 310000 | 37000 | 9000 |
34 | Urad_Dal | Andhra_Pradesh | Low | High | 34 | 2020 | 98 | 330000 | 18000 | 9900 |
35 | Chana_Dal | Maharashtra | Medium | Medium | 35 | 2020 | 75 | 560000 | 32000 | 26000 |
2. PROC SORT – Sort Data by Dal_Name & Year
proc sort data=dal_market_india out=sorted_dal;
by Dal_Name Year;
run;
proc print data=sorted_dal;
title "According To The Dal Name and Year";
run;
Output:
According To The Dal Name and Year
Obs | Dal_Name | Main_Producing_State | Rainfall_Impact | Price_Category | Dal_ID | Year | Average_Price_Per_Kg | Annual_Consumption_Tonnes | Import_Quantity_Tonnes | Export_Quantity_Tonnes |
---|---|---|---|---|---|---|---|---|---|---|
1 | Chana_Dal | Maharashtra | Medium | Medium | 5 | 2014 | 60 | 500000 | 25000 | 20000 |
2 | Chana_Dal | Maharashtra | Medium | Medium | 10 | 2015 | 62 | 510000 | 27000 | 21000 |
3 | Chana_Dal | Maharashtra | Medium | Medium | 15 | 2016 | 68 | 520000 | 29000 | 22000 |
4 | Chana_Dal | Maharashtra | Medium | Medium | 20 | 2017 | 65 | 530000 | 28000 | 23000 |
5 | Chana_Dal | Maharashtra | Medium | Medium | 25 | 2018 | 70 | 540000 | 30000 | 24000 |
6 | Chana_Dal | Maharashtra | Medium | Medium | 30 | 2019 | 72 | 550000 | 31000 | 25000 |
7 | Chana_Dal | Maharashtra | Medium | Medium | 35 | 2020 | 75 | 560000 | 32000 | 26000 |
8 | Masoor_Dal | Madhya_Pradesh | Medium | Medium | 3 | 2014 | 65 | 250000 | 30000 | 5000 |
9 | Masoor_Dal | Uttar_Pradesh | High | Medium | 8 | 2015 | 70 | 260000 | 32000 | 6000 |
10 | Masoor_Dal | Madhya_Pradesh | High | Medium | 13 | 2016 | 72 | 270000 | 33000 | 7000 |
11 | Masoor_Dal | Uttar_Pradesh | High | Medium | 18 | 2017 | 75 | 280000 | 34000 | 7500 |
12 | Masoor_Dal | Madhya_Pradesh | High | Medium | 23 | 2018 | 78 | 290000 | 35000 | 8000 |
13 | Masoor_Dal | Uttar_Pradesh | High | Medium | 28 | 2019 | 80 | 300000 | 36000 | 8500 |
14 | Masoor_Dal | Madhya_Pradesh | High | Medium | 33 | 2020 | 82 | 310000 | 37000 | 9000 |
15 | Moong_Dal | Rajasthan | Low | High | 2 | 2014 | 90 | 320000 | 15000 | 10000 |
16 | Moong_Dal | Rajasthan | Low | High | 7 | 2015 | 95 | 340000 | 18000 | 12000 |
17 | Moong_Dal | Rajasthan | Low | High | 12 | 2016 | 98 | 350000 | 19000 | 13000 |
18 | Moong_Dal | Rajasthan | Medium | High | 17 | 2017 | 92 | 360000 | 15000 | 11000 |
19 | Moong_Dal | Rajasthan | Medium | High | 22 | 2018 | 94 | 370000 | 16000 | 12000 |
20 | Moong_Dal | Rajasthan | Medium | High | 27 | 2019 | 97 | 380000 | 17000 | 13000 |
21 | Moong_Dal | Rajasthan | Low | High | 32 | 2020 | 99 | 390000 | 18000 | 13500 |
22 | Toor_Dal | Maharashtra | Medium | Medium | 1 | 2014 | 75 | 450000 | 20000 | 15000 |
23 | Toor_Dal | Karnataka | Medium | Medium | 6 | 2015 | 80 | 470000 | 22000 | 17000 |
24 | Toor_Dal | Maharashtra | Low | High | 11 | 2016 | 120 | 440000 | 25000 | 18000 |
25 | Toor_Dal | Karnataka | High | Medium | 16 | 2017 | 85 | 480000 | 20000 | 16000 |
26 | Toor_Dal | Maharashtra | High | Medium | 21 | 2018 | 88 | 490000 | 21000 | 17000 |
27 | Toor_Dal | Karnataka | Low | High | 26 | 2019 | 95 | 500000 | 23000 | 17500 |
28 | Toor_Dal | Maharashtra | Low | High | 31 | 2020 | 100 | 510000 | 24000 | 18000 |
29 | Urad_Dal | Andhra_Pradesh | Low | High | 4 | 2014 | 85 | 280000 | 10000 | 8000 |
30 | Urad_Dal | Andhra_Pradesh | Low | High | 9 | 2015 | 88 | 290000 | 12000 | 8500 |
31 | Urad_Dal | Andhra_Pradesh | Low | High | 14 | 2016 | 95 | 295000 | 14000 | 9000 |
32 | Urad_Dal | Andhra_Pradesh | Low | High | 19 | 2017 | 90 | 300000 | 15000 | 9500 |
33 | Urad_Dal | Andhra_Pradesh | Low | High | 24 | 2018 | 92 | 310000 | 16000 | 9700 |
34 | Urad_Dal | Andhra_Pradesh | Low | High | 29 | 2019 | 96 | 320000 | 17000 | 9800 |
35 | Urad_Dal | Andhra_Pradesh | Low | High | 34 | 2020 | 98 | 330000 | 18000 | 9900 |
3. PROC MEANS – Price & Consumption Statistics
proc means data=dal_market_india mean min max std;
var Average_Price_Per_Kg Annual_Consumption_Tonnes Import_Quantity_Tonnes Export_Quantity_Tonnes;
class Dal_Name;
title "Statistical Summary of Dal Prices & Quantities";
run;
Output:
Statistical Summary of Dal Prices & Quantities
The MEANS Procedure
Dal_Name | N Obs | Variable | Mean | Minimum | Maximum | Std Dev |
---|---|---|---|---|---|---|
Chana_Dal | 7 | Average_Price_Per_Kg Annual_Consumption_Tonnes Import_Quantity_Tonnes Export_Quantity_Tonnes | 67.4285714 530000.00 28857.14 23000.00 | 60.0000000 500000.00 25000.00 20000.00 | 75.0000000 560000.00 32000.00 26000.00 | 5.4116277 21602.47 2410.30 2160.25 |
Masoor_Dal | 7 | Average_Price_Per_Kg Annual_Consumption_Tonnes Import_Quantity_Tonnes Export_Quantity_Tonnes | 74.5714286 280000.00 33857.14 7285.71 | 65.0000000 250000.00 30000.00 5000.00 | 82.0000000 310000.00 37000.00 9000.00 | 5.9960304 21602.47 2410.30 1410.00 |
Moong_Dal | 7 | Average_Price_Per_Kg Annual_Consumption_Tonnes Import_Quantity_Tonnes Export_Quantity_Tonnes | 95.0000000 358571.43 16857.14 12071.43 | 90.0000000 320000.00 15000.00 10000.00 | 99.0000000 390000.00 19000.00 13500.00 | 3.2659863 24102.95 1573.59 1239.24 |
Toor_Dal | 7 | Average_Price_Per_Kg Annual_Consumption_Tonnes Import_Quantity_Tonnes Export_Quantity_Tonnes | 91.8571429 477142.86 22142.86 16928.57 | 75.0000000 440000.00 20000.00 15000.00 | 120.0000000 510000.00 25000.00 18000.00 | 15.0269599 25634.80 1951.80 1096.53 |
Urad_Dal | 7 | Average_Price_Per_Kg Annual_Consumption_Tonnes Import_Quantity_Tonnes Export_Quantity_Tonnes | 92.0000000 303571.43 14571.43 9200.00 | 85.0000000 280000.00 10000.00 8000.00 | 98.0000000 330000.00 18000.00 9900.00 | 4.6547467 17491.49 2820.00 725.7180352 |
4. PROC FREQ – Frequency of Rainfall Impact
proc freq data=dal_market_india;
tables Rainfall_Impact*Dal_Name / nocol norow nopercent;
title "Rainfall Impact Distribution Across Dal Types";
run;
Output:
Rainfall Impact Distribution Across Dal Types
The FREQ Procedure
|
|
5. PROC SQL – Top 3 Most Expensive Dal Years
proc sql outobs=3;
title "Top 3 Most Expensive Dal Prices by Year";
select Dal_Name, Year, Average_Price_Per_Kg
from dal_market_india
order by Average_Price_Per_Kg desc;
quit;
Output:
Top 3 Most Expensive Dal Prices by Year
Dal_Name | Year | Average_Price_Per_Kg |
---|---|---|
Toor_Dal | 2016 | 120 |
Toor_Dal | 2020 | 100 |
Moong_Dal | 2020 | 99 |
6. PROC SUMMARY – Yearly Aggregation
proc summary data=dal_market_india nway;
class Year;
var Average_Price_Per_Kg Annual_Consumption_Tonnes;
output out=yearly_summary mean=Avg_Price Mean_Consumption;
run;
proc print data=yearly_summary;
title "Yearly Average Price & Consumption of All Dals";
run;
Output:
Yearly Average Price & Consumption of All Dals
Obs | Year | _TYPE_ | _FREQ_ | Avg_Price | Mean_Consumption |
---|---|---|---|---|---|
1 | 2014 | 1 | 5 | 75.0 | 360000 |
2 | 2015 | 1 | 5 | 79.0 | 374000 |
3 | 2016 | 1 | 5 | 90.6 | 375000 |
4 | 2017 | 1 | 5 | 81.4 | 390000 |
5 | 2018 | 1 | 5 | 84.4 | 400000 |
6 | 2019 | 1 | 5 | 88.0 | 410000 |
7 | 2020 | 1 | 5 | 90.8 | 420000 |
7. MACRO – Generate Report for a Specific Dal
%macro dal_report(dal=);
proc sql;
title "Detailed Report for &dal (2014–2025)";
select * from dal_market_india
where Dal_Name="&dal"
order by Year;
quit;
%mend;
%dal_report(dal=Toor_Dal);
Output:
Detailed Report for Toor_Dal (2014–2025)
Dal_Name | Main_Producing_State | Rainfall_Impact | Price_Category | Dal_ID | Year | Average_Price_Per_Kg | Annual_Consumption_Tonnes | Import_Quantity_Tonnes | Export_Quantity_Tonnes |
---|---|---|---|---|---|---|---|---|---|
Toor_Dal | Maharashtra | Medium | Medium | 1 | 2014 | 75 | 450000 | 20000 | 15000 |
Toor_Dal | Karnataka | Medium | Medium | 6 | 2015 | 80 | 470000 | 22000 | 17000 |
Toor_Dal | Maharashtra | Low | High | 11 | 2016 | 120 | 440000 | 25000 | 18000 |
Toor_Dal | Karnataka | High | Medium | 16 | 2017 | 85 | 480000 | 20000 | 16000 |
Toor_Dal | Maharashtra | High | Medium | 21 | 2018 | 88 | 490000 | 21000 | 17000 |
Toor_Dal | Karnataka | Low | High | 26 | 2019 | 95 | 500000 | 23000 | 17500 |
Toor_Dal | Maharashtra | Low | High | 31 | 2020 | 100 | 510000 | 24000 | 18000 |
%dal_report(dal=Moong_Dal);
Output:
Detailed Report for Moong_Dal (2014–2025)
Dal_Name | Main_Producing_State | Rainfall_Impact | Price_Category | Dal_ID | Year | Average_Price_Per_Kg | Annual_Consumption_Tonnes | Import_Quantity_Tonnes | Export_Quantity_Tonnes |
---|---|---|---|---|---|---|---|---|---|
Moong_Dal | Rajasthan | Low | High | 2 | 2014 | 90 | 320000 | 15000 | 10000 |
Moong_Dal | Rajasthan | Low | High | 7 | 2015 | 95 | 340000 | 18000 | 12000 |
Moong_Dal | Rajasthan | Low | High | 12 | 2016 | 98 | 350000 | 19000 | 13000 |
Moong_Dal | Rajasthan | Medium | High | 17 | 2017 | 92 | 360000 | 15000 | 11000 |
Moong_Dal | Rajasthan | Medium | High | 22 | 2018 | 94 | 370000 | 16000 | 12000 |
Moong_Dal | Rajasthan | Medium | High | 27 | 2019 | 97 | 380000 | 17000 | 13000 |
Moong_Dal | Rajasthan | Low | High | 32 | 2020 | 99 | 390000 | 18000 | 13500 |
8. PROC TRANSPOSE - Comparision Of Prices
proc sort data=dal_market_india out=dal_sorted;
by Dal_Name Year;
run;
proc transpose data=dal_sorted out=dal_price_trend(drop=_NAME_) prefix=Year_;
by Dal_Name; /* Dals in rows */
id Year; /* Years as columns */
var Average_Price_Per_Kg; /* Price values */
run;
proc print data=dal_price_trend;
title "Dal Price Trend (2014–2025) - Years as Columns, Dals as Rows";
run;
Dal Price Trend (2014–2025) - Years as Columns, Dals as Rows
Obs | Dal_Name | Year_2014 | Year_2015 | Year_2016 | Year_2017 | Year_2018 | Year_2019 | Year_2020 |
---|---|---|---|---|---|---|---|---|
1 | Chana_Dal | 60 | 62 | 68 | 65 | 70 | 72 | 75 |
2 | Masoor_Dal | 65 | 70 | 72 | 75 | 78 | 80 | 82 |
3 | Moong_Dal | 90 | 95 | 98 | 92 | 94 | 97 | 99 |
4 | Toor_Dal | 75 | 80 | 120 | 85 | 88 | 95 | 100 |
5 | Urad_Dal | 85 | 88 | 95 | 90 | 92 | 96 | 98 |
- Get link
- X
- Other Apps
Comments
Post a Comment