252.REAL-WORLD DAL PRICE TREND AND YEAR-WISE COMPARISON IN INDIA (2014–2025) USING PROC SORT | PROC TRANSPOSE | PROC PRINT | PROC MEANS | PROC FREQ | PROC SQL | PROC SUMMARY IN SAS

REAL-WORLD DAL PRICE TREND AND YEAR-WISE COMPARISON IN INDIA (2014–2025) USING PROC SORT | PROC TRANSPOSE | PROC PRINT | PROC MEANS | PROC FREQ | PROC SQL | PROC SUMMARY IN SAS

/*Creating a dataset for different types of dals (pulses) in India from 2014–2025*/

Creation Of The Dataset

option nocenter;

 data dal_market_india;

    length Dal_Name $20 Main_Producing_State $20 Rainfall_Impact $10 Price_Category $10;

    input Dal_ID Year Dal_Name $ Average_Price_Per_Kg Annual_Consumption_Tonnes 

          Main_Producing_State $ Import_Quantity_Tonnes Export_Quantity_Tonnes Rainfall_Impact $ Price_Category $;

    datalines;

1 2014 Toor_Dal 75 450000 Maharashtra 20000 15000 Medium Medium

2 2014 Moong_Dal 90 320000 Rajasthan 15000 10000 Low High

3 2014 Masoor_Dal 65 250000 Madhya_Pradesh 30000 5000 Medium Medium

4 2014 Urad_Dal 85 280000 Andhra_Pradesh 10000 8000 Low High

5 2014 Chana_Dal 60 500000 Maharashtra 25000 20000 Medium Medium

6 2015 Toor_Dal 80 470000 Karnataka 22000 17000 Medium Medium

7 2015 Moong_Dal 95 340000 Rajasthan 18000 12000 Low High

8 2015 Masoor_Dal 70 260000 Uttar_Pradesh 32000 6000 High Medium

9 2015 Urad_Dal 88 290000 Andhra_Pradesh 12000 8500 Low High

10 2015 Chana_Dal 62 510000 Maharashtra 27000 21000 Medium Medium

11 2016 Toor_Dal 120 440000 Maharashtra 25000 18000 Low High

12 2016 Moong_Dal 98 350000 Rajasthan 19000 13000 Low High

13 2016 Masoor_Dal 72 270000 Madhya_Pradesh 33000 7000 High Medium

14 2016 Urad_Dal 95 295000 Andhra_Pradesh 14000 9000 Low High

15 2016 Chana_Dal 68 520000 Maharashtra 29000 22000 Medium Medium

16 2017 Toor_Dal 85 480000 Karnataka 20000 16000 High Medium

17 2017 Moong_Dal 92 360000 Rajasthan 15000 11000 Medium High

18 2017 Masoor_Dal 75 280000 Uttar_Pradesh 34000 7500 High Medium

19 2017 Urad_Dal 90 300000 Andhra_Pradesh 15000 9500 Low High

20 2017 Chana_Dal 65 530000 Maharashtra 28000 23000 Medium Medium

21 2018 Toor_Dal 88 490000 Maharashtra 21000 17000 High Medium

22 2018 Moong_Dal 94 370000 Rajasthan 16000 12000 Medium High

23 2018 Masoor_Dal 78 290000 Madhya_Pradesh 35000 8000 High Medium

24 2018 Urad_Dal 92 310000 Andhra_Pradesh 16000 9700 Low High

25 2018 Chana_Dal 70 540000 Maharashtra 30000 24000 Medium Medium

26 2019 Toor_Dal 95 500000 Karnataka 23000 17500 Low High

27 2019 Moong_Dal 97 380000 Rajasthan 17000 13000 Medium High

28 2019 Masoor_Dal 80 300000 Uttar_Pradesh 36000 8500 High Medium

29 2019 Urad_Dal 96 320000 Andhra_Pradesh 17000 9800 Low High

30 2019 Chana_Dal 72 550000 Maharashtra 31000 25000 Medium Medium

31 2020 Toor_Dal 100 510000 Maharashtra 24000 18000 Low High

32 2020 Moong_Dal 99 390000 Rajasthan 18000 13500 Low High

33 2020 Masoor_Dal 82 310000 Madhya_Pradesh 37000 9000 High Medium

34 2020 Urad_Dal 98 330000 Andhra_Pradesh 18000 9900 Low High

35 2020 Chana_Dal 75 560000 Maharashtra 32000 26000 Medium Medium

;

run;

proc print;run;

Output:

ObsDal_NameMain_Producing_StateRainfall_ImpactPrice_CategoryDal_IDYearAverage_Price_Per_KgAnnual_Consumption_TonnesImport_Quantity_TonnesExport_Quantity_Tonnes
1Toor_DalMaharashtraMediumMedium12014754500002000015000
2Moong_DalRajasthanLowHigh22014903200001500010000
3Masoor_DalMadhya_PradeshMediumMedium3201465250000300005000
4Urad_DalAndhra_PradeshLowHigh4201485280000100008000
5Chana_DalMaharashtraMediumMedium52014605000002500020000
6Toor_DalKarnatakaMediumMedium62015804700002200017000
7Moong_DalRajasthanLowHigh72015953400001800012000
8Masoor_DalUttar_PradeshHighMedium8201570260000320006000
9Urad_DalAndhra_PradeshLowHigh9201588290000120008500
10Chana_DalMaharashtraMediumMedium102015625100002700021000
11Toor_DalMaharashtraLowHigh1120161204400002500018000
12Moong_DalRajasthanLowHigh122016983500001900013000
13Masoor_DalMadhya_PradeshHighMedium13201672270000330007000
14Urad_DalAndhra_PradeshLowHigh14201695295000140009000
15Chana_DalMaharashtraMediumMedium152016685200002900022000
16Toor_DalKarnatakaHighMedium162017854800002000016000
17Moong_DalRajasthanMediumHigh172017923600001500011000
18Masoor_DalUttar_PradeshHighMedium18201775280000340007500
19Urad_DalAndhra_PradeshLowHigh19201790300000150009500
20Chana_DalMaharashtraMediumMedium202017655300002800023000
21Toor_DalMaharashtraHighMedium212018884900002100017000
22Moong_DalRajasthanMediumHigh222018943700001600012000
23Masoor_DalMadhya_PradeshHighMedium23201878290000350008000
24Urad_DalAndhra_PradeshLowHigh24201892310000160009700
25Chana_DalMaharashtraMediumMedium252018705400003000024000
26Toor_DalKarnatakaLowHigh262019955000002300017500
27Moong_DalRajasthanMediumHigh272019973800001700013000
28Masoor_DalUttar_PradeshHighMedium28201980300000360008500
29Urad_DalAndhra_PradeshLowHigh29201996320000170009800
30Chana_DalMaharashtraMediumMedium302019725500003100025000
31Toor_DalMaharashtraLowHigh3120201005100002400018000
32Moong_DalRajasthanLowHigh322020993900001800013500
33Masoor_DalMadhya_PradeshHighMedium33202082310000370009000
34Urad_DalAndhra_PradeshLowHigh34202098330000180009900
35Chana_DalMaharashtraMediumMedium352020755600003200026000


1. PROC PRINT – Display Dataset

proc print data=dal_market_india;

    title "Real-World Dal Price & Consumption Dataset (2014–2025)";

run;

Output:

Real-World Dal Price & Consumption Dataset (2014–2025)

ObsDal_NameMain_Producing_StateRainfall_ImpactPrice_CategoryDal_IDYearAverage_Price_Per_KgAnnual_Consumption_TonnesImport_Quantity_TonnesExport_Quantity_Tonnes
1Toor_DalMaharashtraMediumMedium12014754500002000015000
2Moong_DalRajasthanLowHigh22014903200001500010000
3Masoor_DalMadhya_PradeshMediumMedium3201465250000300005000
4Urad_DalAndhra_PradeshLowHigh4201485280000100008000
5Chana_DalMaharashtraMediumMedium52014605000002500020000
6Toor_DalKarnatakaMediumMedium62015804700002200017000
7Moong_DalRajasthanLowHigh72015953400001800012000
8Masoor_DalUttar_PradeshHighMedium8201570260000320006000
9Urad_DalAndhra_PradeshLowHigh9201588290000120008500
10Chana_DalMaharashtraMediumMedium102015625100002700021000
11Toor_DalMaharashtraLowHigh1120161204400002500018000
12Moong_DalRajasthanLowHigh122016983500001900013000
13Masoor_DalMadhya_PradeshHighMedium13201672270000330007000
14Urad_DalAndhra_PradeshLowHigh14201695295000140009000
15Chana_DalMaharashtraMediumMedium152016685200002900022000
16Toor_DalKarnatakaHighMedium162017854800002000016000
17Moong_DalRajasthanMediumHigh172017923600001500011000
18Masoor_DalUttar_PradeshHighMedium18201775280000340007500
19Urad_DalAndhra_PradeshLowHigh19201790300000150009500
20Chana_DalMaharashtraMediumMedium202017655300002800023000
21Toor_DalMaharashtraHighMedium212018884900002100017000
22Moong_DalRajasthanMediumHigh222018943700001600012000
23Masoor_DalMadhya_PradeshHighMedium23201878290000350008000
24Urad_DalAndhra_PradeshLowHigh24201892310000160009700
25Chana_DalMaharashtraMediumMedium252018705400003000024000
26Toor_DalKarnatakaLowHigh262019955000002300017500
27Moong_DalRajasthanMediumHigh272019973800001700013000
28Masoor_DalUttar_PradeshHighMedium28201980300000360008500
29Urad_DalAndhra_PradeshLowHigh29201996320000170009800
30Chana_DalMaharashtraMediumMedium302019725500003100025000
31Toor_DalMaharashtraLowHigh3120201005100002400018000
32Moong_DalRajasthanLowHigh322020993900001800013500
33Masoor_DalMadhya_PradeshHighMedium33202082310000370009000
34Urad_DalAndhra_PradeshLowHigh34202098330000180009900
35Chana_DalMaharashtraMediumMedium352020755600003200026000

2. PROC SORT – Sort Data by Dal_Name & Year

proc sort data=dal_market_india out=sorted_dal;

    by Dal_Name Year;

run;

proc print data=sorted_dal;

   title "According To The Dal Name and Year";

run;

Output:

According To The Dal Name and Year

ObsDal_NameMain_Producing_StateRainfall_ImpactPrice_CategoryDal_IDYearAverage_Price_Per_KgAnnual_Consumption_TonnesImport_Quantity_TonnesExport_Quantity_Tonnes
1Chana_DalMaharashtraMediumMedium52014605000002500020000
2Chana_DalMaharashtraMediumMedium102015625100002700021000
3Chana_DalMaharashtraMediumMedium152016685200002900022000
4Chana_DalMaharashtraMediumMedium202017655300002800023000
5Chana_DalMaharashtraMediumMedium252018705400003000024000
6Chana_DalMaharashtraMediumMedium302019725500003100025000
7Chana_DalMaharashtraMediumMedium352020755600003200026000
8Masoor_DalMadhya_PradeshMediumMedium3201465250000300005000
9Masoor_DalUttar_PradeshHighMedium8201570260000320006000
10Masoor_DalMadhya_PradeshHighMedium13201672270000330007000
11Masoor_DalUttar_PradeshHighMedium18201775280000340007500
12Masoor_DalMadhya_PradeshHighMedium23201878290000350008000
13Masoor_DalUttar_PradeshHighMedium28201980300000360008500
14Masoor_DalMadhya_PradeshHighMedium33202082310000370009000
15Moong_DalRajasthanLowHigh22014903200001500010000
16Moong_DalRajasthanLowHigh72015953400001800012000
17Moong_DalRajasthanLowHigh122016983500001900013000
18Moong_DalRajasthanMediumHigh172017923600001500011000
19Moong_DalRajasthanMediumHigh222018943700001600012000
20Moong_DalRajasthanMediumHigh272019973800001700013000
21Moong_DalRajasthanLowHigh322020993900001800013500
22Toor_DalMaharashtraMediumMedium12014754500002000015000
23Toor_DalKarnatakaMediumMedium62015804700002200017000
24Toor_DalMaharashtraLowHigh1120161204400002500018000
25Toor_DalKarnatakaHighMedium162017854800002000016000
26Toor_DalMaharashtraHighMedium212018884900002100017000
27Toor_DalKarnatakaLowHigh262019955000002300017500
28Toor_DalMaharashtraLowHigh3120201005100002400018000
29Urad_DalAndhra_PradeshLowHigh4201485280000100008000
30Urad_DalAndhra_PradeshLowHigh9201588290000120008500
31Urad_DalAndhra_PradeshLowHigh14201695295000140009000
32Urad_DalAndhra_PradeshLowHigh19201790300000150009500
33Urad_DalAndhra_PradeshLowHigh24201892310000160009700
34Urad_DalAndhra_PradeshLowHigh29201996320000170009800
35Urad_DalAndhra_PradeshLowHigh34202098330000180009900

3. PROC MEANS – Price & Consumption Statistics

proc means data=dal_market_india mean min max std;

    var Average_Price_Per_Kg Annual_Consumption_Tonnes Import_Quantity_Tonnes          Export_Quantity_Tonnes;

    class Dal_Name;

    title "Statistical Summary of Dal Prices & Quantities";

run;

Output:

Statistical Summary of Dal Prices & Quantities

The MEANS Procedure

Dal_NameN ObsVariableMeanMinimumMaximumStd Dev
Chana_Dal7
Average_Price_Per_Kg
Annual_Consumption_Tonnes
Import_Quantity_Tonnes
Export_Quantity_Tonnes
67.4285714
530000.00
28857.14
23000.00
60.0000000
500000.00
25000.00
20000.00
75.0000000
560000.00
32000.00
26000.00
5.4116277
21602.47
2410.30
2160.25
Masoor_Dal7
Average_Price_Per_Kg
Annual_Consumption_Tonnes
Import_Quantity_Tonnes
Export_Quantity_Tonnes
74.5714286
280000.00
33857.14
7285.71
65.0000000
250000.00
30000.00
5000.00
82.0000000
310000.00
37000.00
9000.00
5.9960304
21602.47
2410.30
1410.00
Moong_Dal7
Average_Price_Per_Kg
Annual_Consumption_Tonnes
Import_Quantity_Tonnes
Export_Quantity_Tonnes
95.0000000
358571.43
16857.14
12071.43
90.0000000
320000.00
15000.00
10000.00
99.0000000
390000.00
19000.00
13500.00
3.2659863
24102.95
1573.59
1239.24
Toor_Dal7
Average_Price_Per_Kg
Annual_Consumption_Tonnes
Import_Quantity_Tonnes
Export_Quantity_Tonnes
91.8571429
477142.86
22142.86
16928.57
75.0000000
440000.00
20000.00
15000.00
120.0000000
510000.00
25000.00
18000.00
15.0269599
25634.80
1951.80
1096.53
Urad_Dal7
Average_Price_Per_Kg
Annual_Consumption_Tonnes
Import_Quantity_Tonnes
Export_Quantity_Tonnes
92.0000000
303571.43
14571.43
9200.00
85.0000000
280000.00
10000.00
8000.00
98.0000000
330000.00
18000.00
9900.00
4.6547467
17491.49
2820.00
725.7180352

4. PROC FREQ – Frequency of Rainfall Impact

proc freq data=dal_market_india;

    tables Rainfall_Impact*Dal_Name / nocol norow nopercent;

    title "Rainfall Impact Distribution Across Dal Types";

run;

Output:

Rainfall Impact Distribution Across Dal Types

The FREQ Procedure

Frequency
Table of Rainfall_Impact by Dal_Name
Rainfall_ImpactDal_Name
Chana_DalMasoor_DalMoong_DalToor_DalUrad_DalTotal
High
0
6
0
2
0
8
Low
0
0
4
3
7
14
Medium
7
1
3
2
0
13
Total
7
7
7
7
7
35

5. PROC SQL – Top 3 Most Expensive Dal Years

proc sql outobs=3;

    title "Top 3 Most Expensive Dal Prices by Year";

    select Dal_Name, Year, Average_Price_Per_Kg

    from dal_market_india

    order by Average_Price_Per_Kg desc;

quit;

Output:

Top 3 Most Expensive Dal Prices by Year

Dal_NameYearAverage_Price_Per_Kg
Toor_Dal2016120
Toor_Dal2020100
Moong_Dal202099

6. PROC SUMMARY – Yearly Aggregation

proc summary data=dal_market_india nway;

    class Year;

    var Average_Price_Per_Kg Annual_Consumption_Tonnes;

    output out=yearly_summary mean=Avg_Price Mean_Consumption;

run;


proc print data=yearly_summary;

    title "Yearly Average Price & Consumption of All Dals";

run;

Output:

Yearly Average Price & Consumption of All Dals

ObsYear_TYPE__FREQ_Avg_PriceMean_Consumption
120141575.0360000
220151579.0374000
320161590.6375000
420171581.4390000
520181584.4400000
620191588.0410000
720201590.8420000

7. MACRO – Generate Report for a Specific Dal

%macro dal_report(dal=);

    proc sql;

        title "Detailed Report for &dal (2014–2025)";

        select * from dal_market_india

        where Dal_Name="&dal"

        order by Year;

    quit;

%mend;


%dal_report(dal=Toor_Dal);

Output:

Detailed Report for Toor_Dal (2014–2025)

Dal_NameMain_Producing_StateRainfall_ImpactPrice_CategoryDal_IDYearAverage_Price_Per_KgAnnual_Consumption_TonnesImport_Quantity_TonnesExport_Quantity_Tonnes
Toor_DalMaharashtraMediumMedium12014754500002000015000
Toor_DalKarnatakaMediumMedium62015804700002200017000
Toor_DalMaharashtraLowHigh1120161204400002500018000
Toor_DalKarnatakaHighMedium162017854800002000016000
Toor_DalMaharashtraHighMedium212018884900002100017000
Toor_DalKarnatakaLowHigh262019955000002300017500
Toor_DalMaharashtraLowHigh3120201005100002400018000

%dal_report(dal=Moong_Dal);

Output:

Detailed Report for Moong_Dal (2014–2025)

Dal_NameMain_Producing_StateRainfall_ImpactPrice_CategoryDal_IDYearAverage_Price_Per_KgAnnual_Consumption_TonnesImport_Quantity_TonnesExport_Quantity_Tonnes
Moong_DalRajasthanLowHigh22014903200001500010000
Moong_DalRajasthanLowHigh72015953400001800012000
Moong_DalRajasthanLowHigh122016983500001900013000
Moong_DalRajasthanMediumHigh172017923600001500011000
Moong_DalRajasthanMediumHigh222018943700001600012000
Moong_DalRajasthanMediumHigh272019973800001700013000
Moong_DalRajasthanLowHigh322020993900001800013500

8. PROC TRANSPOSE - Comparision Of Prices 

proc sort data=dal_market_india out=dal_sorted;

    by Dal_Name Year;

run;

proc transpose data=dal_sorted out=dal_price_trend(drop=_NAME_) prefix=Year_;

    by Dal_Name; /* Dals in rows */

    id Year; /* Years as columns */

    var Average_Price_Per_Kg; /* Price values */

run;


proc print data=dal_price_trend;

    title "Dal Price Trend (2014–2025) - Years as Columns, Dals as Rows";

run;

Output:

Dal Price Trend (2014–2025) - Years as Columns, Dals as Rows

ObsDal_NameYear_2014Year_2015Year_2016Year_2017Year_2018Year_2019Year_2020
1Chana_Dal60626865707275
2Masoor_Dal65707275788082
3Moong_Dal90959892949799
4Toor_Dal7580120858895100
5Urad_Dal85889590929698



To Visit My Previous E-Commerce Dataset:Click Here
To Visit My Previous Length,Input,Retain Statements:Click Here
To Visit My Previous Urban Traffic Dataset:Click Here
To Visit My Previous Home Energy Consumption Dataset:Click Here





--->PLEASE FOLLOW OUR BLOG FOR MORE INFORMATION.
--->PLEASE DO COMMENTS AND SHARE OUR BLOG.

PLEASE FOLLOW OUR TELEGRAM CHANNEL CLICK HERE

PLEASE FOLLOW OUR FACEBOOK PAGE  CLICK HERE

PLEASE FOLLOW OUR INSTAGRAM PAGE CLICK HERE


Comments