263.SHOPPING MALLS IN HYDERABAD — DATA CREATION | PROC PRINT | PROC CONTENTS | PROC SORT | PROC MEANS | PROC FREQ | PROC SQL | PROC TABULATE | PROC REPORT | PROC TRANSPOSE | PROC FORMAT | PROC SGPLOT | MACROS

SHOPPING MALLS IN HYDERABAD — DATA CREATION | PROC PRINT | PROC CONTENTS | PROC SORT | PROC MEANS | PROC FREQ | PROC SQL | PROC TABULATE | PROC REPORT | PROC TRANSPOSE | PROC FORMAT | PROC SGPLOT | MACROS

/*Creating a dataset of Hyderabad shopping malls*/

1. Create the dataset: Family of Shopping Malls in Hyderabad 

options nocenter;

data malls_hyd;

    length Mall_Name $30 Location $20 Type $20 Special_Feature $40;

    input Mall_ID Mall_Name $ Location $ Year_Opened Area_sqft Stores Anchors 

          Parking_Capacity Type $ Special_Feature $;

    datalines;

1 Inorbit HitechCity 2004 800000 200 5 2000 Luxury Waterfront_View

2 ForumSujana Kukatpally 2014 1200000 250 6 3000 Family Multiplex_9Screens

3 GVKOne BanjaraHills 2009 700000 150 4 1800 Premium IMAX_Theatre

4 CityCentre BanjaraHills 2006 600000 130 3 1500 Lifestyle Rooftop_Dining

5 SarathCity Gachibowli 2018 1900000 430 8 5000 Mega Largest_Mall

6 Manjeera Kukatpally 2013 900000 220 5 2500 Family FoodCourt_International

7 DSLVirtue Uppal 2015 450000 120 2 1200 Regional Budget_Shopping

8 NextGalleria Punjagutta 2017 650000 140 3 1600 Lifestyle Gaming_Zone

9 NextGalleria Erramanzil 2018 500000 110 2 1400 Lifestyle Multiplex_5Screens

10 NextGalleria Musarambagh 2019 550000 115 3 1500 Regional Affordable_Shopping

11 PVRIcon JubileeHills 2020 480000 100 2 1200 Premium Luxury_Cinema

12 GSMall Malakpet 2012 400000 90 1 900 Regional Community_Center

13 AsianMall LBnagar 2021 520000 105 3 1300 Family Multiplex_Experience

14 SouthIndiaMall KPHB 2010 600000 125 2 1500 Regional Traditional_Brand

15 CentralMall Panjagutta 2008 750000 160 3 1700 Lifestyle Fashion_Focus

;

run;

proc print;run;

Output:

ObsMall_NameLocationTypeSpecial_FeatureMall_IDYear_OpenedArea_sqftStoresAnchorsParking_Capacity
1InorbitHitechCityLuxuryWaterfront_View1200480000020052000
2ForumSujanaKukatpallyFamilyMultiplex_9Screens22014120000025063000
3GVKOneBanjaraHillsPremiumIMAX_Theatre3200970000015041800
4CityCentreBanjaraHillsLifestyleRooftop_Dining4200660000013031500
5SarathCityGachibowliMegaLargest_Mall52018190000043085000
6ManjeeraKukatpallyFamilyFoodCourt_International6201390000022052500
7DSLVirtueUppalRegionalBudget_Shopping7201545000012021200
8NextGalleriaPunjaguttaLifestyleGaming_Zone8201765000014031600
9NextGalleriaErramanzilLifestyleMultiplex_5Screens9201850000011021400
10NextGalleriaMusarambaghRegionalAffordable_Shopping10201955000011531500
11PVRIconJubileeHillsPremiumLuxury_Cinema11202048000010021200
12GSMallMalakpetRegionalCommunity_Center122012400000901900
13AsianMallLBnagarFamilyMultiplex_Experience13202152000010531300
14SouthIndiaMallKPHBRegionalTraditional_Brand14201060000012521500
15CentralMallPanjaguttaLifestyleFashion_Focus15200875000016031700


2. Display the dataset 

proc print data=malls_hyd noobs;

    title "List of Shopping Malls in Hyderabad";

run;

Output:

List of Shopping Malls in Hyderabad

Mall_NameLocationTypeSpecial_FeatureMall_IDYear_OpenedArea_sqftStoresAnchorsParking_Capacity
InorbitHitechCityLuxuryWaterfront_View1200480000020052000
ForumSujanaKukatpallyFamilyMultiplex_9Screens22014120000025063000
GVKOneBanjaraHillsPremiumIMAX_Theatre3200970000015041800
CityCentreBanjaraHillsLifestyleRooftop_Dining4200660000013031500
SarathCityGachibowliMegaLargest_Mall52018190000043085000
ManjeeraKukatpallyFamilyFoodCourt_International6201390000022052500
DSLVirtueUppalRegionalBudget_Shopping7201545000012021200
NextGalleriaPunjaguttaLifestyleGaming_Zone8201765000014031600
NextGalleriaErramanzilLifestyleMultiplex_5Screens9201850000011021400
NextGalleriaMusarambaghRegionalAffordable_Shopping10201955000011531500
PVRIconJubileeHillsPremiumLuxury_Cinema11202048000010021200
GSMallMalakpetRegionalCommunity_Center122012400000901900
AsianMallLBnagarFamilyMultiplex_Experience13202152000010531300
SouthIndiaMallKPHBRegionalTraditional_Brand14201060000012521500
CentralMallPanjaguttaLifestyleFashion_Focus15200875000016031700

3. Dataset structure 

proc contents data=malls_hyd;

    title "Dataset Structure of Shopping Malls";

run;

Output:

Dataset Structure of Shopping Malls

The CONTENTS Procedure

Data Set NameWORK.MALLS_HYDObservations15
Member TypeDATAVariables10
EngineV9Indexes0
Created08/17/2025 17:48:49Observation Length160
Last Modified08/17/2025 17:48:49Deleted Observations0
Protection CompressedNO
Data Set Type SortedNO
Label   
Data RepresentationSOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64  
Encodingutf-8 Unicode (UTF-8)  
Engine/Host Dependent Information
Data Set Page Size131072
Number of Data Set Pages1
First Data Page1
Max Obs per Page818
Obs in First Data Page15
Number of Data Set Repairs0
Filename/saswork/SAS_workFE8E0001E63E_odaws02-apse1-2.oda.sas.com/SAS_work235C0001E63E_odaws02-apse1-2.oda.sas.com/malls_hyd.sas7bdat
Release Created9.0401M8
Host CreatedLinux
Inode Number961173
Access Permissionrw-r--r--
Owner Nameu63247146
File Size256KB
File Size (bytes)262144
Alphabetic List of Variables and Attributes
#VariableTypeLen
9AnchorsNum8
7Area_sqftNum8
2LocationChar20
5Mall_IDNum8
1Mall_NameChar30
10Parking_CapacityNum8
4Special_FeatureChar40
8StoresNum8
3TypeChar20
6Year_OpenedNum8

4. Sort malls by Year_Opened 

proc sort data=malls_hyd out=sorted_malls;

    by Year_Opened;

run;

proc print data=sorted_malls;

    title "Malls Sorted by Year Opened";

run;

Output:

Malls Sorted by Year Opened

ObsMall_NameLocationTypeSpecial_FeatureMall_IDYear_OpenedArea_sqftStoresAnchorsParking_Capacity
1InorbitHitechCityLuxuryWaterfront_View1200480000020052000
2CityCentreBanjaraHillsLifestyleRooftop_Dining4200660000013031500
3CentralMallPanjaguttaLifestyleFashion_Focus15200875000016031700
4GVKOneBanjaraHillsPremiumIMAX_Theatre3200970000015041800
5SouthIndiaMallKPHBRegionalTraditional_Brand14201060000012521500
6GSMallMalakpetRegionalCommunity_Center122012400000901900
7ManjeeraKukatpallyFamilyFoodCourt_International6201390000022052500
8ForumSujanaKukatpallyFamilyMultiplex_9Screens22014120000025063000
9DSLVirtueUppalRegionalBudget_Shopping7201545000012021200
10NextGalleriaPunjaguttaLifestyleGaming_Zone8201765000014031600
11SarathCityGachibowliMegaLargest_Mall52018190000043085000
12NextGalleriaErramanzilLifestyleMultiplex_5Screens9201850000011021400
13NextGalleriaMusarambaghRegionalAffordable_Shopping10201955000011531500
14PVRIconJubileeHillsPremiumLuxury_Cinema11202048000010021200
15AsianMallLBnagarFamilyMultiplex_Experience13202152000010531300

5. Descriptive statistics: Area, Stores, Parking 

proc means data=malls_hyd mean min max std;

    var Area_sqft Stores Parking_Capacity;

    title "Descriptive Statistics of Hyderabad Malls";

run;

Output:

Descriptive Statistics of Hyderabad Malls

The MEANS Procedure

VariableMeanMinimumMaximumStd Dev
Area_sqft
Stores
Parking_Capacity
733333.33
163.0000000
1873.33
400000.00
90.0000000
900.0000000
1900000.00
430.0000000
5000.00
382111.93
87.1533951
1013.81

6. Frequency of mall types 

proc freq data=malls_hyd;

    tables Type;

    title "Frequency Distribution of Mall Types";

run;

Output:

Frequency Distribution of Mall Types

The FREQ Procedure

TypeFrequencyPercentCumulative
Frequency
Cumulative
Percent
Family320.00320.00
Lifestyle426.67746.67
Luxury16.67853.33
Mega16.67960.00
Premium213.331173.33
Regional426.6715100.00

7. Crosstab of Mall Type by Location 

proc freq data=malls_hyd;

    tables Location*Type;

    title "Mall Type by Location Cross-tab";

run;

Output:

Mall Type by Location Cross-tab

The FREQ Procedure

Frequency
Percent
Row Pct
Col Pct
Table of Location by Type
LocationType
FamilyLifestyleLuxuryMegaPremiumRegionalTotal
BanjaraHills
0
0.00
0.00
0.00
1
6.67
50.00
25.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
1
6.67
50.00
50.00
0
0.00
0.00
0.00
2
13.33
 
 
Erramanzil
0
0.00
0.00
0.00
1
6.67
100.00
25.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
1
6.67
 
 
Gachibowli
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
1
6.67
100.00
100.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
1
6.67
 
 
HitechCity
0
0.00
0.00
0.00
0
0.00
0.00
0.00
1
6.67
100.00
100.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
1
6.67
 
 
JubileeHills
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
1
6.67
100.00
50.00
0
0.00
0.00
0.00
1
6.67
 
 
KPHB
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
1
6.67
100.00
25.00
1
6.67
 
 
Kukatpally
2
13.33
100.00
66.67
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
2
13.33
 
 
LBnagar
1
6.67
100.00
33.33
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
1
6.67
 
 
Malakpet
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
1
6.67
100.00
25.00
1
6.67
 
 
Musarambagh
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
1
6.67
100.00
25.00
1
6.67
 
 
Panjagutta
0
0.00
0.00
0.00
1
6.67
100.00
25.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
1
6.67
 
 
Punjagutta
0
0.00
0.00
0.00
1
6.67
100.00
25.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
1
6.67
 
 
Uppal
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
0
0.00
0.00
0.00
1
6.67
100.00
25.00
1
6.67
 
 
Total
3
20.00
4
26.67
1
6.67
1
6.67
2
13.33
4
26.67
15
100.00
8. Report mall info with formatting 

proc report data=malls_hyd nowd;

    columns Mall_Name Location Type Stores Parking_Capacity;

    define Mall_Name / display "Mall Name";

    define Location / group;

    define Type / group;

    define Stores / analysis mean;

    define Parking_Capacity / analysis mean;

    title "Mall Summary Report by Location and Type";

run;

Output:

Mall Summary Report by Location and Type

Mall NameLocationTypeStoresParking_Capacity
CityCentreBanjaraHillsLifestyle1301500
GVKOne Premium1501800
NextGalleriaErramanzilLifestyle1101400
SarathCityGachibowliMega4305000
InorbitHitechCityLuxury2002000
PVRIconJubileeHillsPremium1001200
SouthIndiaMallKPHBRegional1251500
ForumSujanaKukatpallyFamily2503000
Manjeera  2202500
AsianMallLBnagarFamily1051300
GSMallMalakpetRegional90900
NextGalleriaMusarambaghRegional1151500
CentralMallPanjaguttaLifestyle1601700
NextGalleriaPunjaguttaLifestyle1401600
DSLVirtueUppalRegional1201200

9. Tabulate mall characteristics 

proc tabulate data=malls_hyd;

    class Type Location;

    var Area_sqft Stores;

    table Type, Location*Stores*(mean min max);

    title "Tabulated Statistics by Mall Type and Location";

run;

Output:

Tabulated Statistics by Mall Type and Location

 Location
BanjaraHillsErramanzilGachibowliHitechCityJubileeHillsKPHBKukatpallyLBnagarMalakpetMusarambaghPanjaguttaPunjaguttaUppal
StoresStoresStoresStoresStoresStoresStoresStoresStoresStoresStoresStoresStores
MeanMinMaxMeanMinMaxMeanMinMaxMeanMinMaxMeanMinMaxMeanMinMaxMeanMinMaxMeanMinMaxMeanMinMaxMeanMinMaxMeanMinMaxMeanMinMaxMeanMinMax
Type..................235.00220.00250.00105.00105.00105.00...............
Family
Lifestyle130.00130.00130.00110.00110.00110.00........................160.00160.00160.00140.00140.00140.00...
Luxury.........200.00200.00200.00...........................
Mega......430.00430.00430.00..............................
Premium150.00150.00150.00.........100.00100.00100.00........................
Regional...............125.00125.00125.00......90.0090.0090.00115.00115.00115.00......120.00120.00120.00

10. SQL: Select top 5 largest malls 

proc sql outobs=5;

    select Mall_Name, Area_sqft, Stores

    from malls_hyd

    order by Area_sqft desc;

quit;

Output:

Mall_NameArea_sqftStores
SarathCity1900000430
ForumSujana1200000250
Manjeera900000220
Inorbit800000200
CentralMall750000160

11. SQL: Average parking by type 

proc sql;

    select Type, avg(Parking_Capacity) as Avg_Parking

    from malls_hyd

    group by Type;

quit;

Output:

TypeAvg_Parking
Family2266.667
Lifestyle1550
Luxury2000
Mega5000
Premium1500
Regional1275

12. SQL: Count malls opened after 2015 

proc sql;

    select count(*) as Recent_Malls

    from malls_hyd

    where Year_Opened > 2015;

quit;

Output:

Recent_Malls
6

13. Transpose: Malls and Stores 

proc transpose data=malls_hyd out=trans_malls prefix=StoreCount_;

    id Mall_Id;

    var Stores;

run;

proc print data=trans_malls;

    title "Transposed Dataset of Stores per Mall";

run;

Output:

Transposed Dataset of Stores per Mall

Obs_NAME_StoreCount_1StoreCount_2StoreCount_3StoreCount_4StoreCount_5StoreCount_6StoreCount_7StoreCount_8StoreCount_9StoreCount_10StoreCount_11StoreCount_12StoreCount_13StoreCount_14StoreCount_15
1Stores20025015013043022012014011011510090105125160

14. Format: Categorize malls by size 

proc format;

    value sizefmt

        low -< 600000 = "Small"

        600000 -< 1000000 = "Medium"

        1000000 - high = "Large";

run;


data malls_hyd_fmt;

    set malls_hyd;

    Size_Category = put(Area_sqft, sizefmt.);

run;


proc freq data=malls_hyd_fmt;

    tables Size_Category;

    title "Mall Size Categories";

run;

Output:

Mall Size Categories

The FREQ Procedure

Size_CategoryFrequencyPercentCumulative
Frequency
Cumulative
Percent
Large213.33213.33
Medium746.67960.00
Small640.0015100.00

15. Visualization: Mall Area vs Stores 

proc sgplot data=malls_hyd;

    scatter x=Area_sqft y=Stores / datalabel=Mall_Name;

    title "Mall Area vs. Number of Stores";

run;

Output:



16. Macro: Automate top N malls by area 

%macro TopMalls(n=5);

    proc sql outobs=&n;

        select Mall_Name, Area_sqft, Stores

        from malls_hyd

        order by Area_sqft desc

    quit;

%mend;


%TopMalls(n=7);

Output:

Mall_NameArea_sqftStores
SarathCity1900000430
ForumSujana1200000250
Manjeera900000220
Inorbit800000200
CentralMall750000160
GVKOne700000150
NextGalleria650000140




To Visit My Previous Online Streaming Flatform Dataset:Click Here
To Visit My Previous Statistical Evaluation Of Clinical Trials:Click Here
To Visit My Previous Unlocking Retail Insights Dataset:Click Here
To Visit My Previous Sas Interview Questions-1:Click Here





--->PLEASE FOLLOW OUR BLOG FOR MORE INFORMATION.
--->PLEASE DO COMMENTS AND SHARE OUR BLOG.

PLEASE FOLLOW OUR TELEGRAM CHANNEL CLICK HERE

PLEASE FOLLOW OUR FACEBOOK PAGE  CLICK HERE

PLEASE FOLLOW OUR INSTAGRAM PAGE CLICK HERE




Comments