FOREST TYPES DATA ANALYSIS USING SAS DATA STEP | PROC SQL | PROC MEANS | PROC FORMAT | PROC UNIVARIATE | MACROS | DATE FUNCTIONS (INTNX, INTCK) | MERGE | APPEND
options nocenter;
1.FOREST BASE CREATING THE BASE DATASET
data forest_base;
length Forest_Name $20 Country $15 Fire_Risk $10;
format Survey_Date date9.;
input Forest_Name $ Area Country $ Animal_Count Rainfall Fire_Risk $
Survey_Date :date9.;
datalines;
Amazon 5500000 Brazil 3000000 2200 High 01JAN2023
Congo 3700000 Congo 1800000 1900 Medium 15FEB2023
Sundarbans 10000 India 250000 1800 High 20MAR2023
BlackForest 6000 Germany 150000 1200 Low 05APR2023
Taiga 8000000 Russia 4000000 600 Medium 10MAY2023
Daintree 1200 Australia 90000 3500 Medium 12JUN2023
Borneo 740000 Malaysia 600000 3000 High 18JUL2023
Kinabalu 750 Malaysia 120000 2800 Medium 25AUG2023
Sinharaja 88 SriLanka 65000 5000 Low 01SEP2023
Yakushima 505 Japan 70000 4300 Low 10OCT2023
Tongass 68000 USA 200000 4000 Medium 15NOV2023
Sherwood 423 UK 35000 900 Low 01DEC2023
;
run;
proc print data=forest_base;
run;
OUTPUT:
| Obs | Forest_Name | Country | Fire_Risk | Survey_Date | Area | Animal_Count | Rainfall |
|---|---|---|---|---|---|---|---|
| 1 | Amazon | Brazil | High | 01JAN2023 | 5500000 | 3000000 | 2200 |
| 2 | Congo | Congo | Medium | 15FEB2023 | 3700000 | 1800000 | 1900 |
| 3 | Sundarbans | India | High | 20MAR2023 | 10000 | 250000 | 1800 |
| 4 | BlackForest | Germany | Low | 05APR2023 | 6000 | 150000 | 1200 |
| 5 | Taiga | Russia | Medium | 10MAY2023 | 8000000 | 4000000 | 600 |
| 6 | Daintree | Australia | Medium | 12JUN2023 | 1200 | 90000 | 3500 |
| 7 | Borneo | Malaysia | High | 18JUL2023 | 740000 | 600000 | 3000 |
| 8 | Kinabalu | Malaysia | Medium | 25AUG2023 | 750 | 120000 | 2800 |
| 9 | Sinharaja | SriLanka | Low | 01SEP2023 | 88 | 65000 | 5000 |
| 10 | Yakushima | Japan | Low | 10OCT2023 | 505 | 70000 | 4300 |
| 11 | Tongass | USA | Medium | 15NOV2023 | 68000 | 200000 | 4000 |
| 12 | Sherwood | UK | Low | 01DEC2023 | 423 | 35000 | 900 |
2.USING PROC CONTENTS (STRUCTURAL CHECK)
proc contents data=forest_base;
run;
OUTPUT:
The CONTENTS Procedure
| Data Set Name | WORK.FOREST_BASE | Observations | 12 |
|---|---|---|---|
| Member Type | DATA | Variables | 7 |
| Engine | V9 | Indexes | 0 |
| Created | 12/23/2025 07:19:56 | Observation Length | 80 |
| Last Modified | 12/23/2025 07:19:56 | Deleted Observations | 0 |
| Protection | Compressed | NO | |
| Data Set Type | Sorted | NO | |
| Label | |||
| Data Representation | SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64 | ||
| Encoding | utf-8 Unicode (UTF-8) |
| Engine/Host Dependent Information | |
|---|---|
| Data Set Page Size | 131072 |
| Number of Data Set Pages | 1 |
| First Data Page | 1 |
| Max Obs per Page | 1635 |
| Obs in First Data Page | 12 |
| Number of Data Set Repairs | 0 |
| Filename | /saswork/SAS_workD61200018CFF_odaws01-apse1-2.oda.sas.com/SAS_work11FC00018CFF_odaws01-apse1-2.oda.sas.com/forest_base.sas7bdat |
| Release Created | 9.0401M8 |
| Host Created | Linux |
| Inode Number | 134334086 |
| Access Permission | rw-r--r-- |
| Owner Name | u63247146 |
| File Size | 256KB |
| File Size (bytes) | 262144 |
| Alphabetic List of Variables and Attributes | ||||
|---|---|---|---|---|
| # | Variable | Type | Len | Format |
| 6 | Animal_Count | Num | 8 | |
| 5 | Area | Num | 8 | |
| 2 | Country | Char | 15 | |
| 3 | Fire_Risk | Char | 10 | |
| 1 | Forest_Name | Char | 20 | |
| 7 | Rainfall | Num | 8 | |
| 4 | Survey_Date | Num | 8 | DATE9. |
3.PROC SQL FOR DERIVED DATA
Creating an Enhanced Dataset with Safety Index
proc sql;
create table forest_sql as
select *,
case
when Rainfall < 1000 and Animal_Count < 100000 then 'HIGH RISK'
when Rainfall between 1000 and 2500 then 'MODERATE RISK'
else 'LOW RISK'
end as Safety_Level
from forest_base;
quit;
proc print data=forest_sql;
run;
OUTPUT:
| Obs | Forest_Name | Country | Fire_Risk | Survey_Date | Area | Animal_Count | Rainfall | Safety_Level |
|---|---|---|---|---|---|---|---|---|
| 1 | Amazon | Brazil | High | 01JAN2023 | 5500000 | 3000000 | 2200 | MODERATE RISK |
| 2 | Congo | Congo | Medium | 15FEB2023 | 3700000 | 1800000 | 1900 | MODERATE RISK |
| 3 | Sundarbans | India | High | 20MAR2023 | 10000 | 250000 | 1800 | MODERATE RISK |
| 4 | BlackForest | Germany | Low | 05APR2023 | 6000 | 150000 | 1200 | MODERATE RISK |
| 5 | Taiga | Russia | Medium | 10MAY2023 | 8000000 | 4000000 | 600 | LOW RISK |
| 6 | Daintree | Australia | Medium | 12JUN2023 | 1200 | 90000 | 3500 | LOW RISK |
| 7 | Borneo | Malaysia | High | 18JUL2023 | 740000 | 600000 | 3000 | LOW RISK |
| 8 | Kinabalu | Malaysia | Medium | 25AUG2023 | 750 | 120000 | 2800 | LOW RISK |
| 9 | Sinharaja | SriLanka | Low | 01SEP2023 | 88 | 65000 | 5000 | LOW RISK |
| 10 | Yakushima | Japan | Low | 10OCT2023 | 505 | 70000 | 4300 | LOW RISK |
| 11 | Tongass | USA | Medium | 15NOV2023 | 68000 | 200000 | 4000 | LOW RISK |
| 12 | Sherwood | UK | Low | 01DEC2023 | 423 | 35000 | 900 | HIGH RISK |
4.DATE FUNCTIONS (INTNX & INTCK)
Adding Next Survey Date
data forest_dates;
set forest_sql;
Next_Survey = intnx('month', Survey_Date, 6, 'same');
Months_Since = intck('month', Survey_Date, today());
format Next_Survey date9.;
run;
proc print data=forest_dates;
run;
OUTPUT:
| Obs | Forest_Name | Country | Fire_Risk | Survey_Date | Area | Animal_Count | Rainfall | Safety_Level | Next_Survey | Months_Since |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Amazon | Brazil | High | 01JAN2023 | 5500000 | 3000000 | 2200 | MODERATE RISK | 01JUL2023 | 35 |
| 2 | Congo | Congo | Medium | 15FEB2023 | 3700000 | 1800000 | 1900 | MODERATE RISK | 15AUG2023 | 34 |
| 3 | Sundarbans | India | High | 20MAR2023 | 10000 | 250000 | 1800 | MODERATE RISK | 20SEP2023 | 33 |
| 4 | BlackForest | Germany | Low | 05APR2023 | 6000 | 150000 | 1200 | MODERATE RISK | 05OCT2023 | 32 |
| 5 | Taiga | Russia | Medium | 10MAY2023 | 8000000 | 4000000 | 600 | LOW RISK | 10NOV2023 | 31 |
| 6 | Daintree | Australia | Medium | 12JUN2023 | 1200 | 90000 | 3500 | LOW RISK | 12DEC2023 | 30 |
| 7 | Borneo | Malaysia | High | 18JUL2023 | 740000 | 600000 | 3000 | LOW RISK | 18JAN2024 | 29 |
| 8 | Kinabalu | Malaysia | Medium | 25AUG2023 | 750 | 120000 | 2800 | LOW RISK | 25FEB2024 | 28 |
| 9 | Sinharaja | SriLanka | Low | 01SEP2023 | 88 | 65000 | 5000 | LOW RISK | 01MAR2024 | 27 |
| 10 | Yakushima | Japan | Low | 10OCT2023 | 505 | 70000 | 4300 | LOW RISK | 10APR2024 | 26 |
| 11 | Tongass | USA | Medium | 15NOV2023 | 68000 | 200000 | 4000 | LOW RISK | 15MAY2024 | 25 |
| 12 | Sherwood | UK | Low | 01DEC2023 | 423 | 35000 | 900 | HIGH RISK | 01JUN2024 | 24 |
5.PROC MEANS (NUMERICAL SUMMARY)
proc means data=forest_dates min max mean;
var Area Animal_Count Rainfall Months_Since;
run;
OUTPUT:
The MEANS Procedure
| Variable | Minimum | Maximum | Mean |
|---|---|---|---|
Area Animal_Count Rainfall Months_Since | 88.0000000 35000.00 600.0000000 24.0000000 | 8000000.00 4000000.00 5000.00 35.0000000 | 1502247.17 865000.00 2600.00 29.5000000 |
6.PROC FORMAT (CUSTOM RISK LABELS)
proc format;
value rainfmt
low - 1000 = 'Low Rainfall'
1001 - 2500 = 'Moderate Rainfall'
2501 - high = 'Heavy Rainfall';
run;
LOG:
proc print data=forest_dates;
format Rainfall rainfmt.;
run;
OUTPUT:
| Obs | Forest_Name | Country | Fire_Risk | Survey_Date | Area | Animal_Count | Rainfall | Safety_Level | Next_Survey | Months_Since |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Amazon | Brazil | High | 01JAN2023 | 5500000 | 3000000 | Moderate Rainfall | MODERATE RISK | 01JUL2023 | 35 |
| 2 | Congo | Congo | Medium | 15FEB2023 | 3700000 | 1800000 | Moderate Rainfall | MODERATE RISK | 15AUG2023 | 34 |
| 3 | Sundarbans | India | High | 20MAR2023 | 10000 | 250000 | Moderate Rainfall | MODERATE RISK | 20SEP2023 | 33 |
| 4 | BlackForest | Germany | Low | 05APR2023 | 6000 | 150000 | Moderate Rainfall | MODERATE RISK | 05OCT2023 | 32 |
| 5 | Taiga | Russia | Medium | 10MAY2023 | 8000000 | 4000000 | Low Rainfall | LOW RISK | 10NOV2023 | 31 |
| 6 | Daintree | Australia | Medium | 12JUN2023 | 1200 | 90000 | Heavy Rainfall | LOW RISK | 12DEC2023 | 30 |
| 7 | Borneo | Malaysia | High | 18JUL2023 | 740000 | 600000 | Heavy Rainfall | LOW RISK | 18JAN2024 | 29 |
| 8 | Kinabalu | Malaysia | Medium | 25AUG2023 | 750 | 120000 | Heavy Rainfall | LOW RISK | 25FEB2024 | 28 |
| 9 | Sinharaja | SriLanka | Low | 01SEP2023 | 88 | 65000 | Heavy Rainfall | LOW RISK | 01MAR2024 | 27 |
| 10 | Yakushima | Japan | Low | 10OCT2023 | 505 | 70000 | Heavy Rainfall | LOW RISK | 10APR2024 | 26 |
| 11 | Tongass | USA | Medium | 15NOV2023 | 68000 | 200000 | Heavy Rainfall | LOW RISK | 15MAY2024 | 25 |
| 12 | Sherwood | UK | Low | 01DEC2023 | 423 | 35000 | Low Rainfall | HIGH RISK | 01JUN2024 | 24 |
7.PROC UNIVARIATE (DISTRIBUTION ANALYSIS)
proc univariate data=forest_dates;
var Rainfall Animal_Count;
histogram Rainfall Animal_Count;
run;
OUTPUT:
The UNIVARIATE Procedure
Variable: Rainfall
| Moments | |||
|---|---|---|---|
| N | 12 | Sum Weights | 12 |
| Mean | 2600 | Sum Observations | 31200 |
| Std Deviation | 1406.47852 | Variance | 1978181.82 |
| Skewness | 0.22372835 | Kurtosis | -1.0163311 |
| Uncorrected SS | 102880000 | Corrected SS | 21760000 |
| Coeff Variation | 54.0953276 | Std Error Mean | 406.015375 |
| Basic Statistical Measures | |||
|---|---|---|---|
| Location | Variability | ||
| Mean | 2600.000 | Std Deviation | 1406 |
| Median | 2500.000 | Variance | 1978182 |
| Mode | . | Range | 4400 |
| Interquartile Range | 2250 | ||
| Tests for Location: Mu0=0 | ||||
|---|---|---|---|---|
| Test | Statistic | p Value | ||
| Student's t | t | 6.403698 | Pr > |t| | <.0001 |
| Sign | M | 6 | Pr >= |M| | 0.0005 |
| Signed Rank | S | 39 | Pr >= |S| | 0.0005 |
| Quantiles (Definition 5) | |
|---|---|
| Level | Quantile |
| 100% Max | 5000 |
| 99% | 5000 |
| 95% | 5000 |
| 90% | 4300 |
| 75% Q3 | 3750 |
| 50% Median | 2500 |
| 25% Q1 | 1500 |
| 10% | 900 |
| 5% | 600 |
| 1% | 600 |
| 0% Min | 600 |
| Extreme Observations | |||
|---|---|---|---|
| Lowest | Highest | ||
| Value | Obs | Value | Obs |
| 600 | 5 | 3000 | 7 |
| 900 | 12 | 3500 | 6 |
| 1200 | 4 | 4000 | 11 |
| 1800 | 3 | 4300 | 10 |
| 1900 | 2 | 5000 | 9 |
The UNIVARIATE Procedure
The UNIVARIATE Procedure
Variable: Animal_Count
| Moments | |||
|---|---|---|---|
| N | 12 | Sum Weights | 12 |
| Mean | 865000 | Sum Observations | 10380000 |
| Std Deviation | 1340934.21 | Variance | 1.7981E12 |
| Skewness | 1.71859782 | Kurtosis | 1.84889294 |
| Uncorrected SS | 2.87579E13 | Corrected SS | 1.97792E13 |
| Coeff Variation | 155.021296 | Std Error Mean | 387094.362 |
| Basic Statistical Measures | |||
|---|---|---|---|
| Location | Variability | ||
| Mean | 865000.0 | Std Deviation | 1340934 |
| Median | 175000.0 | Variance | 1.7981E12 |
| Mode | . | Range | 3965000 |
| Interquartile Range | 1120000 | ||
| Tests for Location: Mu0=0 | ||||
|---|---|---|---|---|
| Test | Statistic | p Value | ||
| Student's t | t | 2.234597 | Pr > |t| | 0.0471 |
| Sign | M | 6 | Pr >= |M| | 0.0005 |
| Signed Rank | S | 39 | Pr >= |S| | 0.0005 |
| Quantiles (Definition 5) | |
|---|---|
| Level | Quantile |
| 100% Max | 4000000 |
| 99% | 4000000 |
| 95% | 4000000 |
| 90% | 3000000 |
| 75% Q3 | 1200000 |
| 50% Median | 175000 |
| 25% Q1 | 80000 |
| 10% | 65000 |
| 5% | 35000 |
| 1% | 35000 |
| 0% Min | 35000 |
| Extreme Observations | |||
|---|---|---|---|
| Lowest | Highest | ||
| Value | Obs | Value | Obs |
| 35000 | 12 | 250000 | 3 |
| 65000 | 9 | 600000 | 7 |
| 70000 | 10 | 1800000 | 2 |
| 90000 | 6 | 3000000 | 1 |
| 120000 | 8 | 4000000 | 5 |
The UNIVARIATE Procedure
8.MACRO FOR FOREST SAFETY CLASSIFICATION
%macro safety_flag(ds=, out=);
data &out;
set &ds;
if Rainfall < 1000 and Fire_Risk='High' then Safety_Flag='CRITICAL';
else if Fire_Risk='Medium' then Safety_Flag='WATCH';
else Safety_Flag='SAFE';
run;
proc print data=&out;
run;
%mend;
%safety_flag(ds=forest_dates, out=forest_safe);
OUTPUT:
| Obs | Forest_Name | Country | Fire_Risk | Survey_Date | Area | Animal_Count | Rainfall | Safety_Level | Next_Survey | Months_Since | Safety_Flag |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Amazon | Brazil | High | 01JAN2023 | 5500000 | 3000000 | 2200 | MODERATE RISK | 01JUL2023 | 35 | SAFE |
| 2 | Congo | Congo | Medium | 15FEB2023 | 3700000 | 1800000 | 1900 | MODERATE RISK | 15AUG2023 | 34 | WATCH |
| 3 | Sundarbans | India | High | 20MAR2023 | 10000 | 250000 | 1800 | MODERATE RISK | 20SEP2023 | 33 | SAFE |
| 4 | BlackForest | Germany | Low | 05APR2023 | 6000 | 150000 | 1200 | MODERATE RISK | 05OCT2023 | 32 | SAFE |
| 5 | Taiga | Russia | Medium | 10MAY2023 | 8000000 | 4000000 | 600 | LOW RISK | 10NOV2023 | 31 | WATCH |
| 6 | Daintree | Australia | Medium | 12JUN2023 | 1200 | 90000 | 3500 | LOW RISK | 12DEC2023 | 30 | WATCH |
| 7 | Borneo | Malaysia | High | 18JUL2023 | 740000 | 600000 | 3000 | LOW RISK | 18JAN2024 | 29 | SAFE |
| 8 | Kinabalu | Malaysia | Medium | 25AUG2023 | 750 | 120000 | 2800 | LOW RISK | 25FEB2024 | 28 | WATCH |
| 9 | Sinharaja | SriLanka | Low | 01SEP2023 | 88 | 65000 | 5000 | LOW RISK | 01MAR2024 | 27 | SAFE |
| 10 | Yakushima | Japan | Low | 10OCT2023 | 505 | 70000 | 4300 | LOW RISK | 10APR2024 | 26 | SAFE |
| 11 | Tongass | USA | Medium | 15NOV2023 | 68000 | 200000 | 4000 | LOW RISK | 15MAY2024 | 25 | WATCH |
| 12 | Sherwood | UK | Low | 01DEC2023 | 423 | 35000 | 900 | HIGH RISK | 01JUN2024 | 24 | SAFE |
9.USING MERGE STATEMENT
data animal_density;
set forest_safe;
Density = Animal_Count / Area;
keep Forest_Name Density;
run;
proc print data=animal_density;
run;
OUTPUT:
| Obs | Forest_Name | Density |
|---|---|---|
| 1 | Amazon | 0.545 |
| 2 | Congo | 0.486 |
| 3 | Sundarbans | 25.000 |
| 4 | BlackForest | 25.000 |
| 5 | Taiga | 0.500 |
| 6 | Daintree | 75.000 |
| 7 | Borneo | 0.811 |
| 8 | Kinabalu | 160.000 |
| 9 | Sinharaja | 738.636 |
| 10 | Yakushima | 138.614 |
| 11 | Tongass | 2.941 |
| 12 | Sherwood | 82.742 |
proc sort data=forest_safe; by Forest_Name; run;
proc print data=forest_safe;
run;
OUTPUT:
| Obs | Forest_Name | Country | Fire_Risk | Survey_Date | Area | Animal_Count | Rainfall | Safety_Level | Next_Survey | Months_Since | Safety_Flag |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Amazon | Brazil | High | 01JAN2023 | 5500000 | 3000000 | 2200 | MODERATE RISK | 01JUL2023 | 35 | SAFE |
| 2 | BlackForest | Germany | Low | 05APR2023 | 6000 | 150000 | 1200 | MODERATE RISK | 05OCT2023 | 32 | SAFE |
| 3 | Borneo | Malaysia | High | 18JUL2023 | 740000 | 600000 | 3000 | LOW RISK | 18JAN2024 | 29 | SAFE |
| 4 | Congo | Congo | Medium | 15FEB2023 | 3700000 | 1800000 | 1900 | MODERATE RISK | 15AUG2023 | 34 | WATCH |
| 5 | Daintree | Australia | Medium | 12JUN2023 | 1200 | 90000 | 3500 | LOW RISK | 12DEC2023 | 30 | WATCH |
| 6 | Kinabalu | Malaysia | Medium | 25AUG2023 | 750 | 120000 | 2800 | LOW RISK | 25FEB2024 | 28 | WATCH |
| 7 | Sherwood | UK | Low | 01DEC2023 | 423 | 35000 | 900 | HIGH RISK | 01JUN2024 | 24 | SAFE |
| 8 | Sinharaja | SriLanka | Low | 01SEP2023 | 88 | 65000 | 5000 | LOW RISK | 01MAR2024 | 27 | SAFE |
| 9 | Sundarbans | India | High | 20MAR2023 | 10000 | 250000 | 1800 | MODERATE RISK | 20SEP2023 | 33 | SAFE |
| 10 | Taiga | Russia | Medium | 10MAY2023 | 8000000 | 4000000 | 600 | LOW RISK | 10NOV2023 | 31 | WATCH |
| 11 | Tongass | USA | Medium | 15NOV2023 | 68000 | 200000 | 4000 | LOW RISK | 15MAY2024 | 25 | WATCH |
| 12 | Yakushima | Japan | Low | 10OCT2023 | 505 | 70000 | 4300 | LOW RISK | 10APR2024 | 26 | SAFE |
proc sort data=animal_density; by Forest_Name; run;
proc print data=animal_density;
run;
OUTPUT:
| Obs | Forest_Name | Density |
|---|---|---|
| 1 | Amazon | 0.545 |
| 2 | BlackForest | 25.000 |
| 3 | Borneo | 0.811 |
| 4 | Congo | 0.486 |
| 5 | Daintree | 75.000 |
| 6 | Kinabalu | 160.000 |
| 7 | Sherwood | 82.742 |
| 8 | Sinharaja | 738.636 |
| 9 | Sundarbans | 25.000 |
| 10 | Taiga | 0.500 |
| 11 | Tongass | 2.941 |
| 12 | Yakushima | 138.614 |
data forest_merged;
merge forest_safe animal_density;
by Forest_Name;
run;
proc print data=forest_merged;
run;
OUTPUT:
| Obs | Forest_Name | Country | Fire_Risk | Survey_Date | Area | Animal_Count | Rainfall | Safety_Level | Next_Survey | Months_Since | Safety_Flag | Density |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Amazon | Brazil | High | 01JAN2023 | 5500000 | 3000000 | 2200 | MODERATE RISK | 01JUL2023 | 35 | SAFE | 0.545 |
| 2 | BlackForest | Germany | Low | 05APR2023 | 6000 | 150000 | 1200 | MODERATE RISK | 05OCT2023 | 32 | SAFE | 25.000 |
| 3 | Borneo | Malaysia | High | 18JUL2023 | 740000 | 600000 | 3000 | LOW RISK | 18JAN2024 | 29 | SAFE | 0.811 |
| 4 | Congo | Congo | Medium | 15FEB2023 | 3700000 | 1800000 | 1900 | MODERATE RISK | 15AUG2023 | 34 | WATCH | 0.486 |
| 5 | Daintree | Australia | Medium | 12JUN2023 | 1200 | 90000 | 3500 | LOW RISK | 12DEC2023 | 30 | WATCH | 75.000 |
| 6 | Kinabalu | Malaysia | Medium | 25AUG2023 | 750 | 120000 | 2800 | LOW RISK | 25FEB2024 | 28 | WATCH | 160.000 |
| 7 | Sherwood | UK | Low | 01DEC2023 | 423 | 35000 | 900 | HIGH RISK | 01JUN2024 | 24 | SAFE | 82.742 |
| 8 | Sinharaja | SriLanka | Low | 01SEP2023 | 88 | 65000 | 5000 | LOW RISK | 01MAR2024 | 27 | SAFE | 738.636 |
| 9 | Sundarbans | India | High | 20MAR2023 | 10000 | 250000 | 1800 | MODERATE RISK | 20SEP2023 | 33 | SAFE | 25.000 |
| 10 | Taiga | Russia | Medium | 10MAY2023 | 8000000 | 4000000 | 600 | LOW RISK | 10NOV2023 | 31 | WATCH | 0.500 |
| 11 | Tongass | USA | Medium | 15NOV2023 | 68000 | 200000 | 4000 | LOW RISK | 15MAY2024 | 25 | WATCH | 2.941 |
| 12 | Yakushima | Japan | Low | 10OCT2023 | 505 | 70000 | 4300 | LOW RISK | 10APR2024 | 26 | SAFE | 138.614 |
10.APPEND STATEMENT (ADDING NEW OBSERVATIONS)
Creating New Forest Data
data new_forests;
length Forest_Name $20 Country $15 Fire_Risk $10;
format Survey_Date date9.;
input Forest_Name $ Area Country $ Animal_Count Rainfall Fire_Risk $
Survey_Date :date9.;
datalines;
GirForest 1412 India 40000 800 Medium 15JAN2024
;
run;
proc print data=new_forests;
run;
OUTPUT:
| Obs | Forest_Name | Country | Fire_Risk | Survey_Date | Area | Animal_Count | Rainfall |
|---|---|---|---|---|---|---|---|
| 1 | GirForest | India | Medium | 15JAN2024 | 1412 | 40000 | 800 |
Appending
proc append base=forest_merged
data=new_forests force;
run;
proc print data=forest_merged;
run;
OUTPUT:
| Obs | Forest_Name | Country | Fire_Risk | Survey_Date | Area | Animal_Count | Rainfall | Safety_Level | Next_Survey | Months_Since | Safety_Flag | Density |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Amazon | Brazil | High | 01JAN2023 | 5500000 | 3000000 | 2200 | MODERATE RISK | 01JUL2023 | 35 | SAFE | 0.545 |
| 2 | BlackForest | Germany | Low | 05APR2023 | 6000 | 150000 | 1200 | MODERATE RISK | 05OCT2023 | 32 | SAFE | 25.000 |
| 3 | Borneo | Malaysia | High | 18JUL2023 | 740000 | 600000 | 3000 | LOW RISK | 18JAN2024 | 29 | SAFE | 0.811 |
| 4 | Congo | Congo | Medium | 15FEB2023 | 3700000 | 1800000 | 1900 | MODERATE RISK | 15AUG2023 | 34 | WATCH | 0.486 |
| 5 | Daintree | Australia | Medium | 12JUN2023 | 1200 | 90000 | 3500 | LOW RISK | 12DEC2023 | 30 | WATCH | 75.000 |
| 6 | Kinabalu | Malaysia | Medium | 25AUG2023 | 750 | 120000 | 2800 | LOW RISK | 25FEB2024 | 28 | WATCH | 160.000 |
| 7 | Sherwood | UK | Low | 01DEC2023 | 423 | 35000 | 900 | HIGH RISK | 01JUN2024 | 24 | SAFE | 82.742 |
| 8 | Sinharaja | SriLanka | Low | 01SEP2023 | 88 | 65000 | 5000 | LOW RISK | 01MAR2024 | 27 | SAFE | 738.636 |
| 9 | Sundarbans | India | High | 20MAR2023 | 10000 | 250000 | 1800 | MODERATE RISK | 20SEP2023 | 33 | SAFE | 25.000 |
| 10 | Taiga | Russia | Medium | 10MAY2023 | 8000000 | 4000000 | 600 | LOW RISK | 10NOV2023 | 31 | WATCH | 0.500 |
| 11 | Tongass | USA | Medium | 15NOV2023 | 68000 | 200000 | 4000 | LOW RISK | 15MAY2024 | 25 | WATCH | 2.941 |
| 12 | Yakushima | Japan | Low | 10OCT2023 | 505 | 70000 | 4300 | LOW RISK | 10APR2024 | 26 | SAFE | 138.614 |
| 13 | GirForest | India | Medium | 15JAN2024 | 1412 | 40000 | 800 | . | . | . |
11.PROC MEANS
proc means forest_merged;
var Rainfall Area;
run;
/* Note: In practice above there is an Invalid in this code Find it,Correct it and Use it /*
OUTPUT:
The MEANS Procedure
| Variable | N | Mean | Std Dev | Minimum | Maximum |
|---|---|---|---|---|---|
Rainfall Area | 13 13 | 2461.54 1386798.31 | 1436.16 2637717.45 | 600.0000000 88.0000000 | 5000.00 8000000.00 |
12.FINAL VALIDATION OUTPUT
proc print data=forest_merged;
run;
| Obs | Forest_Name | Country | Fire_Risk | Survey_Date | Area | Animal_Count | Rainfall | Safety_Level | Next_Survey | Months_Since | Safety_Flag | Density |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Amazon | Brazil | High | 01JAN2023 | 5500000 | 3000000 | 2200 | MODERATE RISK | 01JUL2023 | 35 | SAFE | 0.545 |
| 2 | BlackForest | Germany | Low | 05APR2023 | 6000 | 150000 | 1200 | MODERATE RISK | 05OCT2023 | 32 | SAFE | 25.000 |
| 3 | Borneo | Malaysia | High | 18JUL2023 | 740000 | 600000 | 3000 | LOW RISK | 18JAN2024 | 29 | SAFE | 0.811 |
| 4 | Congo | Congo | Medium | 15FEB2023 | 3700000 | 1800000 | 1900 | MODERATE RISK | 15AUG2023 | 34 | WATCH | 0.486 |
| 5 | Daintree | Australia | Medium | 12JUN2023 | 1200 | 90000 | 3500 | LOW RISK | 12DEC2023 | 30 | WATCH | 75.000 |
| 6 | Kinabalu | Malaysia | Medium | 25AUG2023 | 750 | 120000 | 2800 | LOW RISK | 25FEB2024 | 28 | WATCH | 160.000 |
| 7 | Sherwood | UK | Low | 01DEC2023 | 423 | 35000 | 900 | HIGH RISK | 01JUN2024 | 24 | SAFE | 82.742 |
| 8 | Sinharaja | SriLanka | Low | 01SEP2023 | 88 | 65000 | 5000 | LOW RISK | 01MAR2024 | 27 | SAFE | 738.636 |
| 9 | Sundarbans | India | High | 20MAR2023 | 10000 | 250000 | 1800 | MODERATE RISK | 20SEP2023 | 33 | SAFE | 25.000 |
| 10 | Taiga | Russia | Medium | 10MAY2023 | 8000000 | 4000000 | 600 | LOW RISK | 10NOV2023 | 31 | WATCH | 0.500 |
| 11 | Tongass | USA | Medium | 15NOV2023 | 68000 | 200000 | 4000 | LOW RISK | 15MAY2024 | 25 | WATCH | 2.941 |
| 12 | Yakushima | Japan | Low | 10OCT2023 | 505 | 70000 | 4300 | LOW RISK | 10APR2024 | 26 | SAFE | 138.614 |
| 13 | GirForest | India | Medium | 15JAN2024 | 1412 | 40000 | 800 | . | . | . |
9.PROC CORR
proc corr data=indian_states;
var Literacy_Rate GDP Population Employment_Rate;
table Literacy_Rate*GDP;
run;
**TABLE is not a valid statement in PROC CORR
/* Note: In practice above there is an Invalid in this code Find it,Correct it and Use it /*
The CORR Procedure
| 1 With Variables: | GDP |
|---|---|
| 4 Variables: | Literacy_Rate GDP Population Employment_Rate |
| Simple Statistics | ||||||
|---|---|---|---|---|---|---|
| Variable | N | Mean | Std Dev | Sum | Minimum | Maximum |
| GDP | 12 | 17.52500 | 8.57418 | 210.30000 | 7.60000 | 38.50000 |
| Literacy_Rate | 12 | 75.72500 | 7.59750 | 908.70000 | 66.10000 | 94.00000 |
| Population | 12 | 83.08333 | 55.20945 | 997.00000 | 30.00000 | 235.00000 |
| Employment_Rate | 12 | 60.85833 | 2.85799 | 730.30000 | 56.20000 | 65.30000 |
| Pearson Correlation Coefficients, N = 12 Prob > |r| under H0: Rho=0 | ||||
|---|---|---|---|---|
| Literacy_Rate | GDP | Population | Employment_Rate | |
| GDP | 0.22374 0.4845 | 1.00000 | 0.33029 0.2944 | 0.55222 0.0626 |
No comments:
Post a Comment