SAFARI ZONES DATA ANALYSIS USING SAS DATA STEP | PROC SQL | PROC MEANS | PROC UNIVARIATE | PROC SGPLOT | MACROS | DATE FUNCTIONS | APPEND | MERGE | TRANSPOSE
options nocenter;
1.CREATING THE SAFARI ZONES DATASET
data safari_zones;
length Zone_Name $25;
format Start_Date Review_Date date9.;
input Zone_Name $ Animals_Count Tourists Area_Size Revenue Safety_Index
Start_Date :date9.;
Review_Date = intnx('year', Start_Date, 1, 'same');
datalines;
Ranthambore 1200 450000 392 85 82 01JAN2015
JimCorbett 1500 520000 520 95 88 15MAR2014
Kaziranga 1800 610000 430 110 90 20FEB2016
GirForest 900 380000 1412 70 85 10APR2013
Bandipur 1100 410000 874 78 80 05MAY2015
Sundarbans 1600 470000 4262 105 75 12JUN2012
Periyar 950 290000 925 60 83 18JUL2016
Tadoba 1250 340000 625 72 86 09AUG2017
Nagarhole 1150 360000 643 74 84 23SEP2014
Pench 980 310000 758 65 81 11OCT2015
Manas 1350 330000 950 68 78 14NOV2013
Satpura 1050 270000 524 55 79 19DEC2016
;
run;
proc print data=safari_zones;
run;
OUTPUT:
| Obs | Zone_Name | Start_Date | Review_Date | Animals_Count | Tourists | Area_Size | Revenue | Safety_Index |
|---|---|---|---|---|---|---|---|---|
| 1 | Ranthambore | 01JAN2015 | 01JAN2016 | 1200 | 450000 | 392 | 85 | 82 |
| 2 | JimCorbett | 15MAR2014 | 15MAR2015 | 1500 | 520000 | 520 | 95 | 88 |
| 3 | Kaziranga | 20FEB2016 | 20FEB2017 | 1800 | 610000 | 430 | 110 | 90 |
| 4 | GirForest | 10APR2013 | 10APR2014 | 900 | 380000 | 1412 | 70 | 85 |
| 5 | Bandipur | 05MAY2015 | 05MAY2016 | 1100 | 410000 | 874 | 78 | 80 |
| 6 | Sundarbans | 12JUN2012 | 12JUN2013 | 1600 | 470000 | 4262 | 105 | 75 |
| 7 | Periyar | 18JUL2016 | 18JUL2017 | 950 | 290000 | 925 | 60 | 83 |
| 8 | Tadoba | 09AUG2017 | 09AUG2018 | 1250 | 340000 | 625 | 72 | 86 |
| 9 | Nagarhole | 23SEP2014 | 23SEP2015 | 1150 | 360000 | 643 | 74 | 84 |
| 10 | Pench | 11OCT2015 | 11OCT2016 | 980 | 310000 | 758 | 65 | 81 |
| 11 | Manas | 14NOV2013 | 14NOV2014 | 1350 | 330000 | 950 | 68 | 78 |
| 12 | Satpura | 19DEC2016 | 19DEC2017 | 1050 | 270000 | 524 | 55 | 79 |
2.USING MDY AND INTCK FOR DATE ANALYSIS
data safari_dates;
set safari_zones;
Fiscal_Start = mdy(4,1,year(Start_Date));
Years_Active = intck('year', Start_Date, today());
format Fiscal_Start date9.;
run;
proc print data=safari_dates;
run;
OUTPUT:
| Obs | Zone_Name | Start_Date | Review_Date | Animals_Count | Tourists | Area_Size | Revenue | Safety_Index | Fiscal_Start | Years_Active |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Ranthambore | 01JAN2015 | 01JAN2016 | 1200 | 450000 | 392 | 85 | 82 | 01APR2015 | 10 |
| 2 | JimCorbett | 15MAR2014 | 15MAR2015 | 1500 | 520000 | 520 | 95 | 88 | 01APR2014 | 11 |
| 3 | Kaziranga | 20FEB2016 | 20FEB2017 | 1800 | 610000 | 430 | 110 | 90 | 01APR2016 | 9 |
| 4 | GirForest | 10APR2013 | 10APR2014 | 900 | 380000 | 1412 | 70 | 85 | 01APR2013 | 12 |
| 5 | Bandipur | 05MAY2015 | 05MAY2016 | 1100 | 410000 | 874 | 78 | 80 | 01APR2015 | 10 |
| 6 | Sundarbans | 12JUN2012 | 12JUN2013 | 1600 | 470000 | 4262 | 105 | 75 | 01APR2012 | 13 |
| 7 | Periyar | 18JUL2016 | 18JUL2017 | 950 | 290000 | 925 | 60 | 83 | 01APR2016 | 9 |
| 8 | Tadoba | 09AUG2017 | 09AUG2018 | 1250 | 340000 | 625 | 72 | 86 | 01APR2017 | 8 |
| 9 | Nagarhole | 23SEP2014 | 23SEP2015 | 1150 | 360000 | 643 | 74 | 84 | 01APR2014 | 11 |
| 10 | Pench | 11OCT2015 | 11OCT2016 | 980 | 310000 | 758 | 65 | 81 | 01APR2015 | 10 |
| 11 | Manas | 14NOV2013 | 14NOV2014 | 1350 | 330000 | 950 | 68 | 78 | 01APR2013 | 12 |
| 12 | Satpura | 19DEC2016 | 19DEC2017 | 1050 | 270000 | 524 | 55 | 79 | 01APR2016 | 9 |
3.DATA VALIDATION USING PROC CONTENTS AND PRINT
proc contents data=safari_dates;
run;
OUTPUT:
The CONTENTS Procedure
| Data Set Name | WORK.SAFARI_DATES | Observations | 12 |
|---|---|---|---|
| Member Type | DATA | Variables | 10 |
| Engine | V9 | Indexes | 0 |
| Created | 12/28/2025 08:05:23 | Observation Length | 104 |
| Last Modified | 12/28/2025 08:05:23 | Deleted Observations | 0 |
| Protection | Compressed | NO | |
| Data Set Type | Sorted | NO | |
| Label | |||
| Data Representation | SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64 | ||
| Encoding | utf-8 Unicode (UTF-8) |
| Engine/Host Dependent Information | |
|---|---|
| Data Set Page Size | 131072 |
| Number of Data Set Pages | 1 |
| First Data Page | 1 |
| Max Obs per Page | 1258 |
| Obs in First Data Page | 12 |
| Number of Data Set Repairs | 0 |
| Filename | /saswork/SAS_work3EB20001C611_odaws01-apse1-2.oda.sas.com/SAS_work5F2E0001C611_odaws01-apse1-2.oda.sas.com/safari_dates.sas7bdat |
| Release Created | 9.0401M8 |
| Host Created | Linux |
| Inode Number | 1207862 |
| Access Permission | rw-r--r-- |
| Owner Name | u63247146 |
| File Size | 256KB |
| File Size (bytes) | 262144 |
| Alphabetic List of Variables and Attributes | ||||
|---|---|---|---|---|
| # | Variable | Type | Len | Format |
| 4 | Animals_Count | Num | 8 | |
| 6 | Area_Size | Num | 8 | |
| 9 | Fiscal_Start | Num | 8 | DATE9. |
| 7 | Revenue | Num | 8 | |
| 3 | Review_Date | Num | 8 | DATE9. |
| 8 | Safety_Index | Num | 8 | |
| 2 | Start_Date | Num | 8 | DATE9. |
| 5 | Tourists | Num | 8 | |
| 10 | Years_Active | Num | 8 | |
| 1 | Zone_Name | Char | 25 | |
proc print data=safari_dates(obs=5);
run;
OUTPUT:
| Obs | Zone_Name | Start_Date | Review_Date | Animals_Count | Tourists | Area_Size | Revenue | Safety_Index | Fiscal_Start | Years_Active |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Ranthambore | 01JAN2015 | 01JAN2016 | 1200 | 450000 | 392 | 85 | 82 | 01APR2015 | 10 |
| 2 | JimCorbett | 15MAR2014 | 15MAR2015 | 1500 | 520000 | 520 | 95 | 88 | 01APR2014 | 11 |
| 3 | Kaziranga | 20FEB2016 | 20FEB2017 | 1800 | 610000 | 430 | 110 | 90 | 01APR2016 | 9 |
| 4 | GirForest | 10APR2013 | 10APR2014 | 900 | 380000 | 1412 | 70 | 85 | 01APR2013 | 12 |
| 5 | Bandipur | 05MAY2015 | 05MAY2016 | 1100 | 410000 | 874 | 78 | 80 | 01APR2015 | 10 |
4.DATA ANALYSIS USING PROC SQL
proc sql;
create table safari_sql as
select Zone_Name,Animals_Count,Tourists,Area_Size,Revenue,Safety_Index,Years_Active,
(Revenue / Area_Size) as Revenue_Density
from safari_dates
where Safety_Index > 80
order by Revenue desc;
quit;
proc print data=safari_sql;
run;
OUTPUT:
| Obs | Zone_Name | Animals_Count | Tourists | Area_Size | Revenue | Safety_Index | Years_Active | Revenue_Density |
|---|---|---|---|---|---|---|---|---|
| 1 | Kaziranga | 1800 | 610000 | 430 | 110 | 90 | 9 | 0.25581 |
| 2 | JimCorbett | 1500 | 520000 | 520 | 95 | 88 | 11 | 0.18269 |
| 3 | Ranthambore | 1200 | 450000 | 392 | 85 | 82 | 10 | 0.21684 |
| 4 | Nagarhole | 1150 | 360000 | 643 | 74 | 84 | 11 | 0.11509 |
| 5 | Tadoba | 1250 | 340000 | 625 | 72 | 86 | 8 | 0.11520 |
| 6 | GirForest | 900 | 380000 | 1412 | 70 | 85 | 12 | 0.04958 |
| 7 | Pench | 980 | 310000 | 758 | 65 | 81 | 10 | 0.08575 |
| 8 | Periyar | 950 | 290000 | 925 | 60 | 83 | 9 | 0.06486 |
5.STATISTICAL SUMMARY USING PROC MEANS
proc means data=safari_zones mean min max sum;
var Animals_Count Tourists Area_Size Revenue Safety_Index;
run;
OUTPUT:
The MEANS Procedure
| Variable | Mean | Minimum | Maximum | Sum |
|---|---|---|---|---|
Animals_Count Tourists Area_Size Revenue Safety_Index | 1235.83 395000.00 1026.25 78.0833333 82.5833333 | 900.0000000 270000.00 392.0000000 55.0000000 75.0000000 | 1800.00 610000.00 4262.00 110.0000000 90.0000000 | 14830.00 4740000.00 12315.00 937.0000000 991.0000000 |
6.DISTRIBUTION ANALYSIS USING PROC UNIVARIATE
proc univariate data=safari_zones;
var Revenue Safety_Index;
histogram Revenue Safety_Index;
run;
OUTPUT:
The UNIVARIATE Procedure
Variable: Revenue
| Moments | |||
|---|---|---|---|
| N | 12 | Sum Weights | 12 |
| Mean | 78.0833333 | Sum Observations | 937 |
| Std Deviation | 17.3962291 | Variance | 302.628788 |
| Skewness | 0.72290943 | Kurtosis | -0.4490746 |
| Uncorrected SS | 76493 | Corrected SS | 3328.91667 |
| Coeff Variation | 22.2790554 | Std Error Mean | 5.02185879 |
| Basic Statistical Measures | |||
|---|---|---|---|
| Location | Variability | ||
| Mean | 78.08333 | Std Deviation | 17.39623 |
| Median | 73.00000 | Variance | 302.62879 |
| Mode | . | Range | 55.00000 |
| Interquartile Range | 23.50000 | ||
| Tests for Location: Mu0=0 | ||||
|---|---|---|---|---|
| Test | Statistic | p Value | ||
| Student's t | t | 15.54869 | Pr > |t| | <.0001 |
| Sign | M | 6 | Pr >= |M| | 0.0005 |
| Signed Rank | S | 39 | Pr >= |S| | 0.0005 |
| Quantiles (Definition 5) | |
|---|---|
| Level | Quantile |
| 100% Max | 110.0 |
| 99% | 110.0 |
| 95% | 110.0 |
| 90% | 105.0 |
| 75% Q3 | 90.0 |
| 50% Median | 73.0 |
| 25% Q1 | 66.5 |
| 10% | 60.0 |
| 5% | 55.0 |
| 1% | 55.0 |
| 0% Min | 55.0 |
| Extreme Observations | |||
|---|---|---|---|
| Lowest | Highest | ||
| Value | Obs | Value | Obs |
| 55 | 12 | 78 | 5 |
| 60 | 7 | 85 | 1 |
| 65 | 10 | 95 | 2 |
| 68 | 11 | 105 | 6 |
| 70 | 4 | 110 | 3 |
The UNIVARIATE Procedure
The UNIVARIATE Procedure
Variable: Safety_Index
| Moments | |||
|---|---|---|---|
| N | 12 | Sum Weights | 12 |
| Mean | 82.5833333 | Sum Observations | 991 |
| Std Deviation | 4.31610795 | Variance | 18.6287879 |
| Skewness | 0.03258173 | Kurtosis | -0.3893496 |
| Uncorrected SS | 82045 | Corrected SS | 204.916667 |
| Coeff Variation | 5.22636685 | Std Error Mean | 1.24595304 |
| Basic Statistical Measures | |||
|---|---|---|---|
| Location | Variability | ||
| Mean | 82.58333 | Std Deviation | 4.31611 |
| Median | 82.50000 | Variance | 18.62879 |
| Mode | . | Range | 15.00000 |
| Interquartile Range | 6.00000 | ||
| Tests for Location: Mu0=0 | ||||
|---|---|---|---|---|
| Test | Statistic | p Value | ||
| Student's t | t | 66.28126 | Pr > |t| | <.0001 |
| Sign | M | 6 | Pr >= |M| | 0.0005 |
| Signed Rank | S | 39 | Pr >= |S| | 0.0005 |
| Quantiles (Definition 5) | |
|---|---|
| Level | Quantile |
| 100% Max | 90.0 |
| 99% | 90.0 |
| 95% | 90.0 |
| 90% | 88.0 |
| 75% Q3 | 85.5 |
| 50% Median | 82.5 |
| 25% Q1 | 79.5 |
| 10% | 78.0 |
| 5% | 75.0 |
| 1% | 75.0 |
| 0% Min | 75.0 |
| Extreme Observations | |||
|---|---|---|---|
| Lowest | Highest | ||
| Value | Obs | Value | Obs |
| 75 | 6 | 84 | 9 |
| 78 | 11 | 85 | 4 |
| 79 | 12 | 86 | 8 |
| 80 | 5 | 88 | 2 |
| 81 | 10 | 90 | 3 |
The UNIVARIATE Procedure
7.VISUAL ANALYSIS USING PROC SGPLOT
proc sgplot data=safari_zones;
scatter x=Area_Size y=Revenue;
title "Revenue vs Area Size for Safari Zones";
run;
OUTPUT:
8.MACRO FOR SAFARI ZONE RATING
%macro zone_rating;
data safari_rated;
set safari_zones;
length Zone_Rating $12;
if Safety_Index >= 85 then Zone_Rating = "EXCELLENT";
else if Safety_Index >= 80 then Zone_Rating = "GOOD";
else if Safety_Index >= 75 then Zone_Rating = "MODERATE";
else Zone_Rating = "RISKY";
run;
proc print data=safari_rated;
run;
%mend;
%zone_rating;
OUTPUT:
| Obs | Zone_Name | Start_Date | Review_Date | Animals_Count | Tourists | Area_Size | Revenue | Safety_Index | Zone_Rating |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Ranthambore | 01JAN2015 | 01JAN2016 | 1200 | 450000 | 392 | 85 | 82 | GOOD |
| 2 | JimCorbett | 15MAR2014 | 15MAR2015 | 1500 | 520000 | 520 | 95 | 88 | EXCELLENT |
| 3 | Kaziranga | 20FEB2016 | 20FEB2017 | 1800 | 610000 | 430 | 110 | 90 | EXCELLENT |
| 4 | GirForest | 10APR2013 | 10APR2014 | 900 | 380000 | 1412 | 70 | 85 | EXCELLENT |
| 5 | Bandipur | 05MAY2015 | 05MAY2016 | 1100 | 410000 | 874 | 78 | 80 | GOOD |
| 6 | Sundarbans | 12JUN2012 | 12JUN2013 | 1600 | 470000 | 4262 | 105 | 75 | MODERATE |
| 7 | Periyar | 18JUL2016 | 18JUL2017 | 950 | 290000 | 925 | 60 | 83 | GOOD |
| 8 | Tadoba | 09AUG2017 | 09AUG2018 | 1250 | 340000 | 625 | 72 | 86 | EXCELLENT |
| 9 | Nagarhole | 23SEP2014 | 23SEP2015 | 1150 | 360000 | 643 | 74 | 84 | GOOD |
| 10 | Pench | 11OCT2015 | 11OCT2016 | 980 | 310000 | 758 | 65 | 81 | GOOD |
| 11 | Manas | 14NOV2013 | 14NOV2014 | 1350 | 330000 | 950 | 68 | 78 | MODERATE |
| 12 | Satpura | 19DEC2016 | 19DEC2017 | 1050 | 270000 | 524 | 55 | 79 | MODERATE |
9.DATA APPEND OPERATION
data new_zone;
length Zone_Name $25;
format Start_Date date9.;
Zone_Name="Valmiki";
Animals_Count=850;
Tourists=220000;
Area_Size=335;
Revenue=48;
Safety_Index=77;
Start_Date='01JAN2018'd;
run;
proc print data=new_zone;
run;
OUTPUT:
| Obs | Zone_Name | Start_Date | Animals_Count | Tourists | Area_Size | Revenue | Safety_Index |
|---|---|---|---|---|---|---|---|
| 1 | Valmiki | 01JAN2018 | 850 | 220000 | 335 | 48 | 77 |
proc append base=safari_zones
data=new_zone force;
run;
proc print data=safari_zones;
run;
OUTPUT:
| Obs | Zone_Name | Start_Date | Review_Date | Animals_Count | Tourists | Area_Size | Revenue | Safety_Index |
|---|---|---|---|---|---|---|---|---|
| 1 | Ranthambore | 01JAN2015 | 01JAN2016 | 1200 | 450000 | 392 | 85 | 82 |
| 2 | JimCorbett | 15MAR2014 | 15MAR2015 | 1500 | 520000 | 520 | 95 | 88 |
| 3 | Kaziranga | 20FEB2016 | 20FEB2017 | 1800 | 610000 | 430 | 110 | 90 |
| 4 | GirForest | 10APR2013 | 10APR2014 | 900 | 380000 | 1412 | 70 | 85 |
| 5 | Bandipur | 05MAY2015 | 05MAY2016 | 1100 | 410000 | 874 | 78 | 80 |
| 6 | Sundarbans | 12JUN2012 | 12JUN2013 | 1600 | 470000 | 4262 | 105 | 75 |
| 7 | Periyar | 18JUL2016 | 18JUL2017 | 950 | 290000 | 925 | 60 | 83 |
| 8 | Tadoba | 09AUG2017 | 09AUG2018 | 1250 | 340000 | 625 | 72 | 86 |
| 9 | Nagarhole | 23SEP2014 | 23SEP2015 | 1150 | 360000 | 643 | 74 | 84 |
| 10 | Pench | 11OCT2015 | 11OCT2016 | 980 | 310000 | 758 | 65 | 81 |
| 11 | Manas | 14NOV2013 | 14NOV2014 | 1350 | 330000 | 950 | 68 | 78 |
| 12 | Satpura | 19DEC2016 | 19DEC2017 | 1050 | 270000 | 524 | 55 | 79 |
| 13 | Valmiki | 01JAN2018 | . | 850 | 220000 | 335 | 48 | 77 |
10.MERGE OPERATION
proc sort data=safari_zones; by Zone_Name; run;
proc print data=safari_zones;
run;
OUTPUT:
| Obs | Zone_Name | Start_Date | Review_Date | Animals_Count | Tourists | Area_Size | Revenue | Safety_Index |
|---|---|---|---|---|---|---|---|---|
| 1 | Bandipur | 05MAY2015 | 05MAY2016 | 1100 | 410000 | 874 | 78 | 80 |
| 2 | GirForest | 10APR2013 | 10APR2014 | 900 | 380000 | 1412 | 70 | 85 |
| 3 | JimCorbett | 15MAR2014 | 15MAR2015 | 1500 | 520000 | 520 | 95 | 88 |
| 4 | Kaziranga | 20FEB2016 | 20FEB2017 | 1800 | 610000 | 430 | 110 | 90 |
| 5 | Manas | 14NOV2013 | 14NOV2014 | 1350 | 330000 | 950 | 68 | 78 |
| 6 | Nagarhole | 23SEP2014 | 23SEP2015 | 1150 | 360000 | 643 | 74 | 84 |
| 7 | Pench | 11OCT2015 | 11OCT2016 | 980 | 310000 | 758 | 65 | 81 |
| 8 | Periyar | 18JUL2016 | 18JUL2017 | 950 | 290000 | 925 | 60 | 83 |
| 9 | Ranthambore | 01JAN2015 | 01JAN2016 | 1200 | 450000 | 392 | 85 | 82 |
| 10 | Satpura | 19DEC2016 | 19DEC2017 | 1050 | 270000 | 524 | 55 | 79 |
| 11 | Sundarbans | 12JUN2012 | 12JUN2013 | 1600 | 470000 | 4262 | 105 | 75 |
| 12 | Tadoba | 09AUG2017 | 09AUG2018 | 1250 | 340000 | 625 | 72 | 86 |
| 13 | Valmiki | 01JAN2018 | . | 850 | 220000 | 335 | 48 | 77 |
proc sort data=safari_rated; by Zone_Name; run;
proc print data=safari_rated;
run;
OUTPUT:
| Obs | Zone_Name | Start_Date | Review_Date | Animals_Count | Tourists | Area_Size | Revenue | Safety_Index | Zone_Rating |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Bandipur | 05MAY2015 | 05MAY2016 | 1100 | 410000 | 874 | 78 | 80 | GOOD |
| 2 | GirForest | 10APR2013 | 10APR2014 | 900 | 380000 | 1412 | 70 | 85 | EXCELLENT |
| 3 | JimCorbett | 15MAR2014 | 15MAR2015 | 1500 | 520000 | 520 | 95 | 88 | EXCELLENT |
| 4 | Kaziranga | 20FEB2016 | 20FEB2017 | 1800 | 610000 | 430 | 110 | 90 | EXCELLENT |
| 5 | Manas | 14NOV2013 | 14NOV2014 | 1350 | 330000 | 950 | 68 | 78 | MODERATE |
| 6 | Nagarhole | 23SEP2014 | 23SEP2015 | 1150 | 360000 | 643 | 74 | 84 | GOOD |
| 7 | Pench | 11OCT2015 | 11OCT2016 | 980 | 310000 | 758 | 65 | 81 | GOOD |
| 8 | Periyar | 18JUL2016 | 18JUL2017 | 950 | 290000 | 925 | 60 | 83 | GOOD |
| 9 | Ranthambore | 01JAN2015 | 01JAN2016 | 1200 | 450000 | 392 | 85 | 82 | GOOD |
| 10 | Satpura | 19DEC2016 | 19DEC2017 | 1050 | 270000 | 524 | 55 | 79 | MODERATE |
| 11 | Sundarbans | 12JUN2012 | 12JUN2013 | 1600 | 470000 | 4262 | 105 | 75 | MODERATE |
| 12 | Tadoba | 09AUG2017 | 09AUG2018 | 1250 | 340000 | 625 | 72 | 86 | EXCELLENT |
data safari_merged;
merge safari_zones safari_rated;
by Zone_Name;
run;
proc print data=safari_merged;
run;
OUTPUT:
| Obs | Zone_Name | Start_Date | Review_Date | Animals_Count | Tourists | Area_Size | Revenue | Safety_Index | Zone_Rating |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Bandipur | 05MAY2015 | 05MAY2016 | 1100 | 410000 | 874 | 78 | 80 | GOOD |
| 2 | GirForest | 10APR2013 | 10APR2014 | 900 | 380000 | 1412 | 70 | 85 | EXCELLENT |
| 3 | JimCorbett | 15MAR2014 | 15MAR2015 | 1500 | 520000 | 520 | 95 | 88 | EXCELLENT |
| 4 | Kaziranga | 20FEB2016 | 20FEB2017 | 1800 | 610000 | 430 | 110 | 90 | EXCELLENT |
| 5 | Manas | 14NOV2013 | 14NOV2014 | 1350 | 330000 | 950 | 68 | 78 | MODERATE |
| 6 | Nagarhole | 23SEP2014 | 23SEP2015 | 1150 | 360000 | 643 | 74 | 84 | GOOD |
| 7 | Pench | 11OCT2015 | 11OCT2016 | 980 | 310000 | 758 | 65 | 81 | GOOD |
| 8 | Periyar | 18JUL2016 | 18JUL2017 | 950 | 290000 | 925 | 60 | 83 | GOOD |
| 9 | Ranthambore | 01JAN2015 | 01JAN2016 | 1200 | 450000 | 392 | 85 | 82 | GOOD |
| 10 | Satpura | 19DEC2016 | 19DEC2017 | 1050 | 270000 | 524 | 55 | 79 | MODERATE |
| 11 | Sundarbans | 12JUN2012 | 12JUN2013 | 1600 | 470000 | 4262 | 105 | 75 | MODERATE |
| 12 | Tadoba | 09AUG2017 | 09AUG2018 | 1250 | 340000 | 625 | 72 | 86 | EXCELLENT |
| 13 | Valmiki | 01JAN2018 | . | 850 | 220000 | 335 | 48 | 77 |
11.TRANSPOSE OPERATION
proc transpose data=safari_zones out=safari_transposed prefix=Zone_;
var Revenue;
id Zone_Name;
run;
proc print data=safari_transposed;
run;
OUTPUT:
| Obs | _NAME_ | Zone_Bandipur | Zone_GirForest | Zone_JimCorbett | Zone_Kaziranga | Zone_Manas | Zone_Nagarhole | Zone_Pench | Zone_Periyar | Zone_Ranthambore | Zone_Satpura | Zone_Sundarbans | Zone_Tadoba | Zone_Valmiki |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Revenue | 78 | 70 | 95 | 110 | 68 | 74 | 65 | 60 | 85 | 55 | 105 | 72 | 48 |
12.PROC MEANS
proc means data=safari_zones;
var Animals_Count Tourists Revenue;
group by Zone_Name;
run;
/* Note: In practice above there is an Invalid in this code Find it,Correct it and Use it /*
OUTPUT:
The MEANS Procedure
| Zone_Name | N Obs | Variable | N | Mean | Std Dev | Minimum | Maximum |
|---|---|---|---|---|---|---|---|
| Bandipur | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1100.00 410000.00 78.0000000 | . . . | 1100.00 410000.00 78.0000000 | 1100.00 410000.00 78.0000000 |
| GirForest | 1 | Animals_Count Tourists Revenue | 1 1 1 | 900.0000000 380000.00 70.0000000 | . . . | 900.0000000 380000.00 70.0000000 | 900.0000000 380000.00 70.0000000 |
| JimCorbett | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1500.00 520000.00 95.0000000 | . . . | 1500.00 520000.00 95.0000000 | 1500.00 520000.00 95.0000000 |
| Kaziranga | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1800.00 610000.00 110.0000000 | . . . | 1800.00 610000.00 110.0000000 | 1800.00 610000.00 110.0000000 |
| Manas | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1350.00 330000.00 68.0000000 | . . . | 1350.00 330000.00 68.0000000 | 1350.00 330000.00 68.0000000 |
| Nagarhole | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1150.00 360000.00 74.0000000 | . . . | 1150.00 360000.00 74.0000000 | 1150.00 360000.00 74.0000000 |
| Pench | 1 | Animals_Count Tourists Revenue | 1 1 1 | 980.0000000 310000.00 65.0000000 | . . . | 980.0000000 310000.00 65.0000000 | 980.0000000 310000.00 65.0000000 |
| Periyar | 1 | Animals_Count Tourists Revenue | 1 1 1 | 950.0000000 290000.00 60.0000000 | . . . | 950.0000000 290000.00 60.0000000 | 950.0000000 290000.00 60.0000000 |
| Ranthambore | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1200.00 450000.00 85.0000000 | . . . | 1200.00 450000.00 85.0000000 | 1200.00 450000.00 85.0000000 |
| Satpura | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1050.00 270000.00 55.0000000 | . . . | 1050.00 270000.00 55.0000000 | 1050.00 270000.00 55.0000000 |
| Sundarbans | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1600.00 470000.00 105.0000000 | . . . | 1600.00 470000.00 105.0000000 | 1600.00 470000.00 105.0000000 |
| Tadoba | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1250.00 340000.00 72.0000000 | . . . | 1250.00 340000.00 72.0000000 | 1250.00 340000.00 72.0000000 |
| Valmiki | 1 | Animals_Count Tourists Revenue | 1 1 1 | 850.0000000 220000.00 48.0000000 | . . . | 850.0000000 220000.00 48.0000000 | 850.0000000 220000.00 48.0000000 |
No comments:
Post a Comment