ROBOTICS INNOVATIONS DATA ANALYSIS USING SAS DATA STEP | PROC SQL | PROC MEANS | PROC FREQ | PROC RANK | MACROS | DATE FUNCTIONS (MDY - INTNX - INTCK) | APPEND | MERGE | TRANSPOSE
options nocenter;
1.ROBOTICS BASE DATASET CREATION
data robotics_base;
length Robot_Name $20 Usage $20 Country $15 Complexity_Level $10;
format Launch_Date Review_Date date9.;
input Robot_Name $ Usage $ Country $ Cost Complexity_Level $ Adoption_Rate
Launch_Date :date9.;
Review_Date = intnx('month', Launch_Date, 6, 'same');
datalines;
RoboMedic Healthcare USA 250000 High 72 15JAN2020
AutoArm Manufacturing Germany 180000 Medium 65 10MAR2019
AgriBot Agriculture India 90000 Medium 58 22JUL2021
SentinelX Defense Israel 400000 High 80 01DEC2018
CleanMate Domestic Japan 45000 Low 74 05FEB2022
LogiBot Logistics China 120000 Medium 69 19SEP2020
EduDroid Education UK 60000 Low 55 12APR2021
RescueOne Disaster USA 300000 High 62 03AUG2019
NanoSurgeon Healthcare Switzerland 500000 High 48 28NOV2017
MineRover Mining Australia 220000 Medium 51 14MAY2018
HotelBot Service Singapore 75000 Low 66 20JAN2022
FarmAssist Agriculture Netherlands 110000 Medium 59 18JUN2020
DefenseAI Defense SouthKorea 420000 High 77 11OCT2019
;
run;
proc print data=robotics_base;
run;
OUTPUT:
| Obs | Robot_Name | Usage | Country | Complexity_Level | Launch_Date | Review_Date | Cost | Adoption_Rate |
|---|---|---|---|---|---|---|---|---|
| 1 | RoboMedic | Healthcare | USA | High | 15JAN2020 | 15JUL2020 | 250000 | 72 |
| 2 | AutoArm | Manufacturing | Germany | Medium | 10MAR2019 | 10SEP2019 | 180000 | 65 |
| 3 | AgriBot | Agriculture | India | Medium | 22JUL2021 | 22JAN2022 | 90000 | 58 |
| 4 | SentinelX | Defense | Israel | High | 01DEC2018 | 01JUN2019 | 400000 | 80 |
| 5 | CleanMate | Domestic | Japan | Low | 05FEB2022 | 05AUG2022 | 45000 | 74 |
| 6 | LogiBot | Logistics | China | Medium | 19SEP2020 | 19MAR2021 | 120000 | 69 |
| 7 | EduDroid | Education | UK | Low | 12APR2021 | 12OCT2021 | 60000 | 55 |
| 8 | RescueOne | Disaster | USA | High | 03AUG2019 | 03FEB2020 | 300000 | 62 |
| 9 | NanoSurgeon | Healthcare | Switzerland | High | 28NOV2017 | 28MAY2018 | 500000 | 48 |
| 10 | MineRover | Mining | Australia | Medium | 14MAY2018 | 14NOV2018 | 220000 | 51 |
| 11 | HotelBot | Service | Singapore | Low | 20JAN2022 | 20JUL2022 | 75000 | 66 |
| 12 | FarmAssist | Agriculture | Netherlands | Medium | 18JUN2020 | 18DEC2020 | 110000 | 59 |
| 13 | DefenseAI | Defense | SouthKorea | High | 11OCT2019 | 11APR2020 | 420000 | 77 |
2.DATE FUNCTIONS PRACTICE (MDY | INTNX | INTCK)
data robotics_dates;
set robotics_base;
Year_Launched = year(Launch_Date);
Months_Since_Launch = intck('month', Launch_Date, today());
Next_Review = intnx('year', Launch_Date, 1, 'same');
Custom_Date = mdy(12,31,Year_Launched);
format Next_Review Custom_Date date9.;
run;
proc print data=robotics_dates;
run;
OUTPUT:
| Obs | Robot_Name | Usage | Country | Complexity_Level | Launch_Date | Review_Date | Cost | Adoption_Rate | Year_Launched | Months_Since_Launch | Next_Review | Custom_Date |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | RoboMedic | Healthcare | USA | High | 15JAN2020 | 15JUL2020 | 250000 | 72 | 2020 | 71 | 15JAN2021 | 31DEC2020 |
| 2 | AutoArm | Manufacturing | Germany | Medium | 10MAR2019 | 10SEP2019 | 180000 | 65 | 2019 | 81 | 10MAR2020 | 31DEC2019 |
| 3 | AgriBot | Agriculture | India | Medium | 22JUL2021 | 22JAN2022 | 90000 | 58 | 2021 | 53 | 22JUL2022 | 31DEC2021 |
| 4 | SentinelX | Defense | Israel | High | 01DEC2018 | 01JUN2019 | 400000 | 80 | 2018 | 84 | 01DEC2019 | 31DEC2018 |
| 5 | CleanMate | Domestic | Japan | Low | 05FEB2022 | 05AUG2022 | 45000 | 74 | 2022 | 46 | 05FEB2023 | 31DEC2022 |
| 6 | LogiBot | Logistics | China | Medium | 19SEP2020 | 19MAR2021 | 120000 | 69 | 2020 | 63 | 19SEP2021 | 31DEC2020 |
| 7 | EduDroid | Education | UK | Low | 12APR2021 | 12OCT2021 | 60000 | 55 | 2021 | 56 | 12APR2022 | 31DEC2021 |
| 8 | RescueOne | Disaster | USA | High | 03AUG2019 | 03FEB2020 | 300000 | 62 | 2019 | 76 | 03AUG2020 | 31DEC2019 |
| 9 | NanoSurgeon | Healthcare | Switzerland | High | 28NOV2017 | 28MAY2018 | 500000 | 48 | 2017 | 97 | 28NOV2018 | 31DEC2017 |
| 10 | MineRover | Mining | Australia | Medium | 14MAY2018 | 14NOV2018 | 220000 | 51 | 2018 | 91 | 14MAY2019 | 31DEC2018 |
| 11 | HotelBot | Service | Singapore | Low | 20JAN2022 | 20JUL2022 | 75000 | 66 | 2022 | 47 | 20JAN2023 | 31DEC2022 |
| 12 | FarmAssist | Agriculture | Netherlands | Medium | 18JUN2020 | 18DEC2020 | 110000 | 59 | 2020 | 66 | 18JUN2021 | 31DEC2020 |
| 13 | DefenseAI | Defense | SouthKorea | High | 11OCT2019 | 11APR2020 | 420000 | 77 | 2019 | 74 | 11OCT2020 | 31DEC2019 |
3.PROC SQL – DATA EXTRACTION & DERIVATIONS
proc sql;
create table robotics_sql as
select Robot_Name,Usage,Country,Cost,Complexity_Level,Adoption_Rate,Launch_Date,
Review_Date,
case
when Cost > 300000 then 'Very Expensive'
when Cost > 150000 then 'Expensive'
else 'Affordable'
end as Cost_Category
from robotics_dates;
quit;
proc print data=robotics_sql;
run;
OUTPUT:
| Obs | Robot_Name | Usage | Country | Cost | Complexity_Level | Adoption_Rate | Launch_Date | Review_Date | Cost_Category |
|---|---|---|---|---|---|---|---|---|---|
| 1 | RoboMedic | Healthcare | USA | 250000 | High | 72 | 15JAN2020 | 15JUL2020 | Expensive |
| 2 | AutoArm | Manufacturing | Germany | 180000 | Medium | 65 | 10MAR2019 | 10SEP2019 | Expensive |
| 3 | AgriBot | Agriculture | India | 90000 | Medium | 58 | 22JUL2021 | 22JAN2022 | Affordable |
| 4 | SentinelX | Defense | Israel | 400000 | High | 80 | 01DEC2018 | 01JUN2019 | Very Expensive |
| 5 | CleanMate | Domestic | Japan | 45000 | Low | 74 | 05FEB2022 | 05AUG2022 | Affordable |
| 6 | LogiBot | Logistics | China | 120000 | Medium | 69 | 19SEP2020 | 19MAR2021 | Affordable |
| 7 | EduDroid | Education | UK | 60000 | Low | 55 | 12APR2021 | 12OCT2021 | Affordable |
| 8 | RescueOne | Disaster | USA | 300000 | High | 62 | 03AUG2019 | 03FEB2020 | Expensive |
| 9 | NanoSurgeon | Healthcare | Switzerland | 500000 | High | 48 | 28NOV2017 | 28MAY2018 | Very Expensive |
| 10 | MineRover | Mining | Australia | 220000 | Medium | 51 | 14MAY2018 | 14NOV2018 | Expensive |
| 11 | HotelBot | Service | Singapore | 75000 | Low | 66 | 20JAN2022 | 20JUL2022 | Affordable |
| 12 | FarmAssist | Agriculture | Netherlands | 110000 | Medium | 59 | 18JUN2020 | 18DEC2020 | Affordable |
| 13 | DefenseAI | Defense | SouthKorea | 420000 | High | 77 | 11OCT2019 | 11APR2020 | Very Expensive |
4.PROC MEANS – NUMERICAL SUMMARY
proc means data=robotics_sql mean min max;
var Cost Adoption_Rate;
run;
OUTPUT:
The MEANS Procedure
| Variable | Mean | Minimum | Maximum |
|---|---|---|---|
Cost Adoption_Rate | 213076.92 64.3076923 | 45000.00 48.0000000 | 500000.00 80.0000000 |
5.PROC FREQ – CATEGORICAL ANALYSIS
proc freq data=robotics_sql;
tables Country*Complexity_Level / nocum;
run;
OUTPUT:
The FREQ Procedure
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6.MACRO – AUTOMATION LEVEL CLASSIFICATION
%macro automation_level;
data robotics_auto;
set robotics_sql;
length Automation_Level $30;
if Adoption_Rate >= 70 then Automation_Level='Highly Automated';
else if Adoption_Rate >= 55 then Automation_Level='Moderately Automated';
else Automation_Level='Low Automation';
run;
proc print data=robotics_auto;
run;
%mend;
%automation_level;
OUTPUT:
| Obs | Robot_Name | Usage | Country | Cost | Complexity_Level | Adoption_Rate | Launch_Date | Review_Date | Cost_Category | Automation_Level |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | RoboMedic | Healthcare | USA | 250000 | High | 72 | 15JAN2020 | 15JUL2020 | Expensive | Highly Automated |
| 2 | AutoArm | Manufacturing | Germany | 180000 | Medium | 65 | 10MAR2019 | 10SEP2019 | Expensive | Moderately Automated |
| 3 | AgriBot | Agriculture | India | 90000 | Medium | 58 | 22JUL2021 | 22JAN2022 | Affordable | Moderately Automated |
| 4 | SentinelX | Defense | Israel | 400000 | High | 80 | 01DEC2018 | 01JUN2019 | Very Expensive | Highly Automated |
| 5 | CleanMate | Domestic | Japan | 45000 | Low | 74 | 05FEB2022 | 05AUG2022 | Affordable | Highly Automated |
| 6 | LogiBot | Logistics | China | 120000 | Medium | 69 | 19SEP2020 | 19MAR2021 | Affordable | Moderately Automated |
| 7 | EduDroid | Education | UK | 60000 | Low | 55 | 12APR2021 | 12OCT2021 | Affordable | Moderately Automated |
| 8 | RescueOne | Disaster | USA | 300000 | High | 62 | 03AUG2019 | 03FEB2020 | Expensive | Moderately Automated |
| 9 | NanoSurgeon | Healthcare | Switzerland | 500000 | High | 48 | 28NOV2017 | 28MAY2018 | Very Expensive | Low Automation |
| 10 | MineRover | Mining | Australia | 220000 | Medium | 51 | 14MAY2018 | 14NOV2018 | Expensive | Low Automation |
| 11 | HotelBot | Service | Singapore | 75000 | Low | 66 | 20JAN2022 | 20JUL2022 | Affordable | Moderately Automated |
| 12 | FarmAssist | Agriculture | Netherlands | 110000 | Medium | 59 | 18JUN2020 | 18DEC2020 | Affordable | Moderately Automated |
| 13 | DefenseAI | Defense | SouthKorea | 420000 | High | 77 | 11OCT2019 | 11APR2020 | Very Expensive | Highly Automated |
7.PROC RANK – ROBOT ADOPTION RANKING
proc rank data=robotics_auto out=robotics_rank descending;
var Adoption_Rate;
ranks Adoption_Rank;
run;
proc print data=robotics_rank;
run;
OUTPUT:
| Obs | Robot_Name | Usage | Country | Cost | Complexity_Level | Adoption_Rate | Launch_Date | Review_Date | Cost_Category | Automation_Level | Adoption_Rank |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | RoboMedic | Healthcare | USA | 250000 | High | 72 | 15JAN2020 | 15JUL2020 | Expensive | Highly Automated | 4 |
| 2 | AutoArm | Manufacturing | Germany | 180000 | Medium | 65 | 10MAR2019 | 10SEP2019 | Expensive | Moderately Automated | 7 |
| 3 | AgriBot | Agriculture | India | 90000 | Medium | 58 | 22JUL2021 | 22JAN2022 | Affordable | Moderately Automated | 10 |
| 4 | SentinelX | Defense | Israel | 400000 | High | 80 | 01DEC2018 | 01JUN2019 | Very Expensive | Highly Automated | 1 |
| 5 | CleanMate | Domestic | Japan | 45000 | Low | 74 | 05FEB2022 | 05AUG2022 | Affordable | Highly Automated | 3 |
| 6 | LogiBot | Logistics | China | 120000 | Medium | 69 | 19SEP2020 | 19MAR2021 | Affordable | Moderately Automated | 5 |
| 7 | EduDroid | Education | UK | 60000 | Low | 55 | 12APR2021 | 12OCT2021 | Affordable | Moderately Automated | 11 |
| 8 | RescueOne | Disaster | USA | 300000 | High | 62 | 03AUG2019 | 03FEB2020 | Expensive | Moderately Automated | 8 |
| 9 | NanoSurgeon | Healthcare | Switzerland | 500000 | High | 48 | 28NOV2017 | 28MAY2018 | Very Expensive | Low Automation | 13 |
| 10 | MineRover | Mining | Australia | 220000 | Medium | 51 | 14MAY2018 | 14NOV2018 | Expensive | Low Automation | 12 |
| 11 | HotelBot | Service | Singapore | 75000 | Low | 66 | 20JAN2022 | 20JUL2022 | Affordable | Moderately Automated | 6 |
| 12 | FarmAssist | Agriculture | Netherlands | 110000 | Medium | 59 | 18JUN2020 | 18DEC2020 | Affordable | Moderately Automated | 9 |
| 13 | DefenseAI | Defense | SouthKorea | 420000 | High | 77 | 11OCT2019 | 11APR2020 | Very Expensive | Highly Automated | 2 |
8.PROC APPEND – ADDITIONAL ROBOT RECORDS
data robotics_new;
length Robot_Name $20 Usage $20 Country $15 Complexity_Level $10;
input Robot_Name $ Usage $ Country $ Cost Complexity_Level $ Adoption_Rate Launch_Date :date9.;
datalines;
SmartGuard Security USA 280000 High 71 02FEB2021
;
run;
proc print data=robotics_new;
run;
OUTPUT:
| Obs | Robot_Name | Usage | Country | Complexity_Level | Cost | Adoption_Rate | Launch_Date |
|---|---|---|---|---|---|---|---|
| 1 | SmartGuard | Security | USA | High | 280000 | 71 | 22313 |
proc append base=robotics_rank
data=robotics_new force;
run;
proc print data=robotics_rank;
run;
OUTPUT:
| Obs | Robot_Name | Usage | Country | Cost | Complexity_Level | Adoption_Rate | Launch_Date | Review_Date | Cost_Category | Automation_Level | Adoption_Rank |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | RoboMedic | Healthcare | USA | 250000 | High | 72 | 15JAN2020 | 15JUL2020 | Expensive | Highly Automated | 4 |
| 2 | AutoArm | Manufacturing | Germany | 180000 | Medium | 65 | 10MAR2019 | 10SEP2019 | Expensive | Moderately Automated | 7 |
| 3 | AgriBot | Agriculture | India | 90000 | Medium | 58 | 22JUL2021 | 22JAN2022 | Affordable | Moderately Automated | 10 |
| 4 | SentinelX | Defense | Israel | 400000 | High | 80 | 01DEC2018 | 01JUN2019 | Very Expensive | Highly Automated | 1 |
| 5 | CleanMate | Domestic | Japan | 45000 | Low | 74 | 05FEB2022 | 05AUG2022 | Affordable | Highly Automated | 3 |
| 6 | LogiBot | Logistics | China | 120000 | Medium | 69 | 19SEP2020 | 19MAR2021 | Affordable | Moderately Automated | 5 |
| 7 | EduDroid | Education | UK | 60000 | Low | 55 | 12APR2021 | 12OCT2021 | Affordable | Moderately Automated | 11 |
| 8 | RescueOne | Disaster | USA | 300000 | High | 62 | 03AUG2019 | 03FEB2020 | Expensive | Moderately Automated | 8 |
| 9 | NanoSurgeon | Healthcare | Switzerland | 500000 | High | 48 | 28NOV2017 | 28MAY2018 | Very Expensive | Low Automation | 13 |
| 10 | MineRover | Mining | Australia | 220000 | Medium | 51 | 14MAY2018 | 14NOV2018 | Expensive | Low Automation | 12 |
| 11 | HotelBot | Service | Singapore | 75000 | Low | 66 | 20JAN2022 | 20JUL2022 | Affordable | Moderately Automated | 6 |
| 12 | FarmAssist | Agriculture | Netherlands | 110000 | Medium | 59 | 18JUN2020 | 18DEC2020 | Affordable | Moderately Automated | 9 |
| 13 | DefenseAI | Defense | SouthKorea | 420000 | High | 77 | 11OCT2019 | 11APR2020 | Very Expensive | Highly Automated | 2 |
| 14 | SmartGuard | Security | USA | 280000 | High | 71 | 02FEB2021 | . | . |
9.PROC MERGE – COUNTRY METADATA JOIN
data country_info;
length Country $15 Region $15;
input Country $ Region $;
datalines;
USA NorthAmerica
Germany Europe
India Asia
Japan Asia
China Asia
;
run;
proc print data=country_info;
run;
OUTPUT:
| Obs | Country | Region |
|---|---|---|
| 1 | USA | NorthAmerica |
| 2 | Germany | Europe |
| 3 | India | Asia |
| 4 | Japan | Asia |
| 5 | China | Asia |
proc sort data=robotics_rank; by Country; run;
proc print data=robotics_rank;
run;
OUTPUT:
| Obs | Robot_Name | Usage | Country | Cost | Complexity_Level | Adoption_Rate | Launch_Date | Review_Date | Cost_Category | Automation_Level | Adoption_Rank |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | MineRover | Mining | Australia | 220000 | Medium | 51 | 14MAY2018 | 14NOV2018 | Expensive | Low Automation | 12 |
| 2 | LogiBot | Logistics | China | 120000 | Medium | 69 | 19SEP2020 | 19MAR2021 | Affordable | Moderately Automated | 5 |
| 3 | AutoArm | Manufacturing | Germany | 180000 | Medium | 65 | 10MAR2019 | 10SEP2019 | Expensive | Moderately Automated | 7 |
| 4 | AgriBot | Agriculture | India | 90000 | Medium | 58 | 22JUL2021 | 22JAN2022 | Affordable | Moderately Automated | 10 |
| 5 | SentinelX | Defense | Israel | 400000 | High | 80 | 01DEC2018 | 01JUN2019 | Very Expensive | Highly Automated | 1 |
| 6 | CleanMate | Domestic | Japan | 45000 | Low | 74 | 05FEB2022 | 05AUG2022 | Affordable | Highly Automated | 3 |
| 7 | FarmAssist | Agriculture | Netherlands | 110000 | Medium | 59 | 18JUN2020 | 18DEC2020 | Affordable | Moderately Automated | 9 |
| 8 | HotelBot | Service | Singapore | 75000 | Low | 66 | 20JAN2022 | 20JUL2022 | Affordable | Moderately Automated | 6 |
| 9 | DefenseAI | Defense | SouthKorea | 420000 | High | 77 | 11OCT2019 | 11APR2020 | Very Expensive | Highly Automated | 2 |
| 10 | NanoSurgeon | Healthcare | Switzerland | 500000 | High | 48 | 28NOV2017 | 28MAY2018 | Very Expensive | Low Automation | 13 |
| 11 | EduDroid | Education | UK | 60000 | Low | 55 | 12APR2021 | 12OCT2021 | Affordable | Moderately Automated | 11 |
| 12 | RoboMedic | Healthcare | USA | 250000 | High | 72 | 15JAN2020 | 15JUL2020 | Expensive | Highly Automated | 4 |
| 13 | RescueOne | Disaster | USA | 300000 | High | 62 | 03AUG2019 | 03FEB2020 | Expensive | Moderately Automated | 8 |
| 14 | SmartGuard | Security | USA | 280000 | High | 71 | 02FEB2021 | . | . |
proc sort data=country_info; by Country; run;
proc print data=robotics_info;
run;
OUTPUT:
| Obs | Country | Region |
|---|---|---|
| 1 | China | Asia |
| 2 | Germany | Europe |
| 3 | India | Asia |
| 4 | Japan | Asia |
| 5 | USA | NorthAmerica |
data robotics_merged;
merge robotics_rank(in=a) country_info(in=b);
by Country;
if a;
run;
proc print data=robotics_merged;
run;
OUTPUT:
| Obs | Robot_Name | Usage | Country | Cost | Complexity_Level | Adoption_Rate | Launch_Date | Review_Date | Cost_Category | Automation_Level | Adoption_Rank | Region |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | MineRover | Mining | Australia | 220000 | Medium | 51 | 14MAY2018 | 14NOV2018 | Expensive | Low Automation | 12 | |
| 2 | LogiBot | Logistics | China | 120000 | Medium | 69 | 19SEP2020 | 19MAR2021 | Affordable | Moderately Automated | 5 | Asia |
| 3 | AutoArm | Manufacturing | Germany | 180000 | Medium | 65 | 10MAR2019 | 10SEP2019 | Expensive | Moderately Automated | 7 | Europe |
| 4 | AgriBot | Agriculture | India | 90000 | Medium | 58 | 22JUL2021 | 22JAN2022 | Affordable | Moderately Automated | 10 | Asia |
| 5 | SentinelX | Defense | Israel | 400000 | High | 80 | 01DEC2018 | 01JUN2019 | Very Expensive | Highly Automated | 1 | |
| 6 | CleanMate | Domestic | Japan | 45000 | Low | 74 | 05FEB2022 | 05AUG2022 | Affordable | Highly Automated | 3 | Asia |
| 7 | FarmAssist | Agriculture | Netherlands | 110000 | Medium | 59 | 18JUN2020 | 18DEC2020 | Affordable | Moderately Automated | 9 | |
| 8 | HotelBot | Service | Singapore | 75000 | Low | 66 | 20JAN2022 | 20JUL2022 | Affordable | Moderately Automated | 6 | |
| 9 | DefenseAI | Defense | SouthKorea | 420000 | High | 77 | 11OCT2019 | 11APR2020 | Very Expensive | Highly Automated | 2 | |
| 10 | NanoSurgeon | Healthcare | Switzerland | 500000 | High | 48 | 28NOV2017 | 28MAY2018 | Very Expensive | Low Automation | 13 | |
| 11 | EduDroid | Education | UK | 60000 | Low | 55 | 12APR2021 | 12OCT2021 | Affordable | Moderately Automated | 11 | |
| 12 | RoboMedic | Healthcare | USA | 250000 | High | 72 | 15JAN2020 | 15JUL2020 | Expensive | Highly Automated | 4 | NorthAmerica |
| 13 | RescueOne | Disaster | USA | 300000 | High | 62 | 03AUG2019 | 03FEB2020 | Expensive | Moderately Automated | 8 | NorthAmerica |
| 14 | SmartGuard | Security | USA | 280000 | High | 71 | 02FEB2021 | . | . | NorthAmerica |
10.PROC TRANSPOSE – ADOPTION RATE VIEW
proc transpose data=robotics_merged out=robotics_transpose prefix=Robot_;
by Country;
var Adoption_Rate;
run;
proc print data=robotics_transpose;
run;
OUTPUT:
| Obs | Country | _NAME_ | Robot_1 | Robot_2 | Robot_3 |
|---|---|---|---|---|---|
| 1 | Australia | Adoption_Rate | 51 | . | . |
| 2 | China | Adoption_Rate | 69 | . | . |
| 3 | Germany | Adoption_Rate | 65 | . | . |
| 4 | India | Adoption_Rate | 58 | . | . |
| 5 | Israel | Adoption_Rate | 80 | . | . |
| 6 | Japan | Adoption_Rate | 74 | . | . |
| 7 | Netherlands | Adoption_Rate | 59 | . | . |
| 8 | Singapore | Adoption_Rate | 66 | . | . |
| 9 | SouthKorea | Adoption_Rate | 77 | . | . |
| 10 | Switzerland | Adoption_Rate | 48 | . | . |
| 11 | UK | Adoption_Rate | 55 | . | . |
| 12 | USA | Adoption_Rate | 72 | 62 | 71 |
YESTERDAY'S QUESTION:
12.PROC MEANS
proc means data=safari_zones;
var Animals_Count Tourists Revenue;
group by Zone_Name;
run;
**GROUP BY is not supported in PROC MEANS
proc means data=safari_zones;
var Animals_Count Tourists Revenue;
class Zone_Name;
run;
**CLASS is supported in PROC MEANS
/* Note: In practice above there is an Invalid in this code Find it,Correct it and Use it /*
OUTPUT:
The MEANS Procedure
| Zone_Name | N Obs | Variable | N | Mean | Std Dev | Minimum | Maximum |
|---|---|---|---|---|---|---|---|
| Bandipur | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1100.00 410000.00 78.0000000 | . . . | 1100.00 410000.00 78.0000000 | 1100.00 410000.00 78.0000000 |
| GirForest | 1 | Animals_Count Tourists Revenue | 1 1 1 | 900.0000000 380000.00 70.0000000 | . . . | 900.0000000 380000.00 70.0000000 | 900.0000000 380000.00 70.0000000 |
| JimCorbett | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1500.00 520000.00 95.0000000 | . . . | 1500.00 520000.00 95.0000000 | 1500.00 520000.00 95.0000000 |
| Kaziranga | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1800.00 610000.00 110.0000000 | . . . | 1800.00 610000.00 110.0000000 | 1800.00 610000.00 110.0000000 |
| Manas | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1350.00 330000.00 68.0000000 | . . . | 1350.00 330000.00 68.0000000 | 1350.00 330000.00 68.0000000 |
| Nagarhole | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1150.00 360000.00 74.0000000 | . . . | 1150.00 360000.00 74.0000000 | 1150.00 360000.00 74.0000000 |
| Pench | 1 | Animals_Count Tourists Revenue | 1 1 1 | 980.0000000 310000.00 65.0000000 | . . . | 980.0000000 310000.00 65.0000000 | 980.0000000 310000.00 65.0000000 |
| Periyar | 1 | Animals_Count Tourists Revenue | 1 1 1 | 950.0000000 290000.00 60.0000000 | . . . | 950.0000000 290000.00 60.0000000 | 950.0000000 290000.00 60.0000000 |
| Ranthambore | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1200.00 450000.00 85.0000000 | . . . | 1200.00 450000.00 85.0000000 | 1200.00 450000.00 85.0000000 |
| Satpura | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1050.00 270000.00 55.0000000 | . . . | 1050.00 270000.00 55.0000000 | 1050.00 270000.00 55.0000000 |
| Sundarbans | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1600.00 470000.00 105.0000000 | . . . | 1600.00 470000.00 105.0000000 | 1600.00 470000.00 105.0000000 |
| Tadoba | 1 | Animals_Count Tourists Revenue | 1 1 1 | 1250.00 340000.00 72.0000000 | . . . | 1250.00 340000.00 72.0000000 | 1250.00 340000.00 72.0000000 |
| Valmiki | 1 | Animals_Count Tourists Revenue | 1 1 1 | 850.0000000 220000.00 48.0000000 | . . . | 850.0000000 220000.00 48.0000000 | 850.0000000 220000.00 48.0000000 |
No comments:
Post a Comment