354.Can DATA STEP and PROC SQL uncover which Virtual Reality (VR) applications are truly driving user engagement and revenue growth?

Can DATA STEP and PROC SQL uncover which Virtual Reality (VR) applications are truly driving user engagement and revenue growth?

options nocenter;

1.VR APPS DATASET CREATION

data vr_apps;

    format Launch_Date Review_Date date9.;

    input App_Name $12. Industry $15. Usage_Hours User_Satisfaction Complexity $8. Cost

           Launch_Date :date9. Review_Date :date9.;

datalines;

MediVR       Healthcare     120 9 High    15000 15JAN2020 10JAN2024

EduSimVR     Education      90  8 Medium   8000 20MAR2021 05JAN2024

BuildXR      Construction   110 8 High    20000 01JUN2019 08JAN2024

GameSphere   Gaming         200 9 Medium  12000 10DEC2022 09JAN2024

TourVista    Tourism        75  7 Low      6000 25FEB2021 06JAN2024

TrainProVR   Corporate      160 8 High    18000 30JUL2018 11JAN2024

DefenseSim   Defense        190 9 High    25000 10OCT2017 12JAN2024

RetailXR     Retail         85  7 Medium   7000 05MAY2020 04JAN2024

AutoDesignVR Manufacturing  140 8 High    22000 14AUG2019 10JAN2024

SportsArena  Sports         130 8 Medium  10000 18NOV2021 09JAN2024

TherapyVR    Healthcare     100 9 Medium  14000 22APR2020 07JAN2024

MuseumWalk   Culture        60  7 Low      5000 01JAN2022 03JAN2024

RemoteMeetVR IT             170 8 Medium  16000 12SEP2020 11JAN2024

;

run;

proc print data=vr_apps;

run;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCost
115JAN202010JAN2024MediVRHealthcare1209High15000
220MAR202105JAN2024EduSimVREducation908Medium8000
301JUN201908JAN2024BuildXRConstruction1108High20000
410DEC202209JAN2024GameSphereGaming2009Medium12000
525FEB202106JAN2024TourVistaTourism757Low6000
630JUL201811JAN2024TrainProVRCorporate1608High18000
710OCT201712JAN2024DefenseSimDefense1909High25000
805MAY202004JAN2024RetailXRRetail857Medium7000
914AUG201910JAN2024AutoDesignVRManufacturing1408High22000
1018NOV202109JAN2024SportsArenaSports1308Medium10000
1122APR202007JAN2024TherapyVRHealthcare1009Medium14000
1201JAN202203JAN2024MuseumWalkCulture607Low5000
1312SEP202011JAN2024RemoteMeetVRIT1708Medium16000


2.DATE FUNCTIONS: MDY, INTCK, INTNX

Creating Derived Date Variables

data vr_dates;

    set vr_apps;


    /* Create standardized review date */

    Standard_Review = mdy(1,1,2024);


    /* Years since launch */

    Years_Since_Launch = intck('year', Launch_Date, Review_Date);


    /* Next annual review */

    Next_Review = intnx('year', Review_Date, 1, 'same');


    format Standard_Review Next_Review date9.;

run;

proc print data=vr_dates;

run;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCostStandard_ReviewYears_Since_LaunchNext_Review
115JAN202010JAN2024MediVRHealthcare1209High1500001JAN2024410JAN2025
220MAR202105JAN2024EduSimVREducation908Medium800001JAN2024305JAN2025
301JUN201908JAN2024BuildXRConstruction1108High2000001JAN2024508JAN2025
410DEC202209JAN2024GameSphereGaming2009Medium1200001JAN2024209JAN2025
525FEB202106JAN2024TourVistaTourism757Low600001JAN2024306JAN2025
630JUL201811JAN2024TrainProVRCorporate1608High1800001JAN2024611JAN2025
710OCT201712JAN2024DefenseSimDefense1909High2500001JAN2024712JAN2025
805MAY202004JAN2024RetailXRRetail857Medium700001JAN2024404JAN2025
914AUG201910JAN2024AutoDesignVRManufacturing1408High2200001JAN2024510JAN2025
1018NOV202109JAN2024SportsArenaSports1308Medium1000001JAN2024309JAN2025
1122APR202007JAN2024TherapyVRHealthcare1009Medium1400001JAN2024407JAN2025
1201JAN202203JAN2024MuseumWalkCulture607Low500001JAN2024203JAN2025
1312SEP202011JAN2024RemoteMeetVRIT1708Medium1600001JAN2024411JAN2025


3.PROC SQL – INDUSTRY LEVEL ANALYSIS

proc sql;

    create table industry_summary as

    select Industry,

           count(App_Name) as Total_Apps,

           avg(Usage_Hours) as Avg_Usage,

           avg(User_Satisfaction) as Avg_Satisfaction,

           sum(Cost) as Total_Cost

    from vr_apps

    group by Industry;

quit;

proc print data=industry_summary;

run;

OUTPUT:

ObsIndustryTotal_AppsAvg_UsageAvg_SatisfactionTotal_Cost
1Construction1110820000
2Corporate1160818000
3Culture16075000
4Defense1190925000
5Education19088000
6Gaming1200912000
7Healthcare2110929000
8IT1170816000
9Manufacturing1140822000
10Retail18577000
11Sports1130810000
12Tourism17576000


4.PROC MEANS – STATISTICAL SUMMARY

proc means data=vr_apps mean min max;

    var Usage_Hours User_Satisfaction Cost;

run;

OUTPUT:

The MEANS Procedure

VariableMeanMinimumMaximum
Usage_Hours
User_Satisfaction
Cost
125.3846154
8.0769231
13692.31
60.0000000
7.0000000
5000.00
200.0000000
9.0000000
25000.00

5.MACROS – AUTOMATED CATEGORIZATION

Macro for Cost Category

%macro cost_category;

data vr_cost_cat;

    set vr_apps;

    length Cost_Category $10;


    if Cost < 8000 then Cost_Category = "Low";

    else if Cost < 15000 then Cost_Category = "Medium";

    else Cost_Category = "High";

run;

proc print data=vr_cost_cat;

run;

%mend;


%cost_category;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCostCost_Category
115JAN202010JAN2024MediVRHealthcare1209High15000High
220MAR202105JAN2024EduSimVREducation908Medium8000Medium
301JUN201908JAN2024BuildXRConstruction1108High20000High
410DEC202209JAN2024GameSphereGaming2009Medium12000Medium
525FEB202106JAN2024TourVistaTourism757Low6000Low
630JUL201811JAN2024TrainProVRCorporate1608High18000High
710OCT201712JAN2024DefenseSimDefense1909High25000High
805MAY202004JAN2024RetailXRRetail857Medium7000Low
914AUG201910JAN2024AutoDesignVRManufacturing1408High22000High
1018NOV202109JAN2024SportsArenaSports1308Medium10000Medium
1122APR202007JAN2024TherapyVRHealthcare1009Medium14000Medium
1201JAN202203JAN2024MuseumWalkCulture607Low5000Low
1312SEP202011JAN2024RemoteMeetVRIT1708Medium16000High


6.PROC SGPLOT – VISUALIZATION

Usage Hours by Industry

proc sgplot data=vr_apps;

    vbar Industry / response=Usage_Hours stat=mean;

    title "Average VR Usage Hours by Industry";

run;

OUTPUT:

The SGPlot Procedure


Satisfaction vs Cost

proc sgplot data=vr_apps;

    scatter x=Cost y=User_Satisfaction;

    title "User Satisfaction vs Cost of VR Applications";

run;

OUTPUT:

The SGPlot Procedure


7.PROC APPEND – ADDITIONAL DATA

data vr_new;

    format Launch_Date Review_Date date9.;

input App_Name $12. Industry $ Usage_Hours User_Satisfaction Complexity $8. Cost

           Launch_Date:date9.  Review_Date:date9. ;

datalines;

CityPlanVR  Urban 95 8 Medium  9000   01JAN2023   10JAN2024

;

run;

proc print data=vr_new;

run;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCost
101JAN202310JAN2024CityPlanVRUrban958Medium9000


proc append base=vr_apps 

            data=vr_new;

run;

proc print data=vr_apps;

run;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCost
115JAN202010JAN2024MediVRHealthcare1209High15000
220MAR202105JAN2024EduSimVREducation908Medium8000
301JUN201908JAN2024BuildXRConstruction1108High20000
410DEC202209JAN2024GameSphereGaming2009Medium12000
525FEB202106JAN2024TourVistaTourism757Low6000
630JUL201811JAN2024TrainProVRCorporate1608High18000
710OCT201712JAN2024DefenseSimDefense1909High25000
805MAY202004JAN2024RetailXRRetail857Medium7000
914AUG201910JAN2024AutoDesignVRManufacturing1408High22000
1018NOV202109JAN2024SportsArenaSports1308Medium10000
1122APR202007JAN2024TherapyVRHealthcare1009Medium14000
1201JAN202203JAN2024MuseumWalkCulture607Low5000
1312SEP202011JAN2024RemoteMeetVRIT1708Medium16000
1401JAN202310JAN2024CityPlanVRUrban958Medium9000


8.PROC MERGE – COMBINING DATASETS

proc sort data=vr_apps; by App_Name; run;

proc print data=vr_apps;

run;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCost
114AUG201910JAN2024AutoDesignVRManufacturing1408High22000
201JUN201908JAN2024BuildXRConstruction1108High20000
301JAN202310JAN2024CityPlanVRUrban958Medium9000
410OCT201712JAN2024DefenseSimDefense1909High25000
520MAR202105JAN2024EduSimVREducation908Medium8000
610DEC202209JAN2024GameSphereGaming2009Medium12000
715JAN202010JAN2024MediVRHealthcare1209High15000
801JAN202203JAN2024MuseumWalkCulture607Low5000
912SEP202011JAN2024RemoteMeetVRIT1708Medium16000
1005MAY202004JAN2024RetailXRRetail857Medium7000
1118NOV202109JAN2024SportsArenaSports1308Medium10000
1222APR202007JAN2024TherapyVRHealthcare1009Medium14000
1325FEB202106JAN2024TourVistaTourism757Low6000
1430JUL201811JAN2024TrainProVRCorporate1608High18000


proc sort data=vr_cost_cat; by App_Name; run;

proc print data=vr_cost_cat;

run;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCostCost_Category
114AUG201910JAN2024AutoDesignVRManufacturing1408High22000High
201JUN201908JAN2024BuildXRConstruction1108High20000High
310OCT201712JAN2024DefenseSimDefense1909High25000High
420MAR202105JAN2024EduSimVREducation908Medium8000Medium
510DEC202209JAN2024GameSphereGaming2009Medium12000Medium
615JAN202010JAN2024MediVRHealthcare1209High15000High
701JAN202203JAN2024MuseumWalkCulture607Low5000Low
812SEP202011JAN2024RemoteMeetVRIT1708Medium16000High
905MAY202004JAN2024RetailXRRetail857Medium7000Low
1018NOV202109JAN2024SportsArenaSports1308Medium10000Medium
1122APR202007JAN2024TherapyVRHealthcare1009Medium14000Medium
1225FEB202106JAN2024TourVistaTourism757Low6000Low
1330JUL201811JAN2024TrainProVRCorporate1608High18000High


data vr_merged;

    merge vr_apps vr_cost_cat;

    by App_Name;

run;

proc print data=vr_merged;

run;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCostCost_Category
114AUG201910JAN2024AutoDesignVRManufacturing1408High22000High
201JUN201908JAN2024BuildXRConstruction1108High20000High
301JAN202310JAN2024CityPlanVRUrban958Medium9000 
410OCT201712JAN2024DefenseSimDefense1909High25000High
520MAR202105JAN2024EduSimVREducation908Medium8000Medium
610DEC202209JAN2024GameSphereGaming2009Medium12000Medium
715JAN202010JAN2024MediVRHealthcare1209High15000High
801JAN202203JAN2024MuseumWalkCulture607Low5000Low
912SEP202011JAN2024RemoteMeetVRIT1708Medium16000High
1005MAY202004JAN2024RetailXRRetail857Medium7000Low
1118NOV202109JAN2024SportsArenaSports1308Medium10000Medium
1222APR202007JAN2024TherapyVRHealthcare1009Medium14000Medium
1325FEB202106JAN2024TourVistaTourism757Low6000Low
1430JUL201811JAN2024TrainProVRCorporate1608High18000High


9.PROC TRANSPOSE – RESHAPING DATA

proc transpose data=industry_summary out=industry_trans;

    by Industry;

    var Avg_Usage Avg_Satisfaction;

run;

proc print data=industry_trans;

run;

OUTPUT:

ObsIndustry_NAME_COL1
1ConstructionAvg_Usage110
2ConstructionAvg_Satisfaction8
3CorporateAvg_Usage160
4CorporateAvg_Satisfaction8
5CultureAvg_Usage60
6CultureAvg_Satisfaction7
7DefenseAvg_Usage190
8DefenseAvg_Satisfaction9
9EducationAvg_Usage90
10EducationAvg_Satisfaction8
11GamingAvg_Usage200
12GamingAvg_Satisfaction9
13HealthcareAvg_Usage110
14HealthcareAvg_Satisfaction9
15ITAvg_Usage170
16ITAvg_Satisfaction8
17ManufacturingAvg_Usage140
18ManufacturingAvg_Satisfaction8
19RetailAvg_Usage85
20RetailAvg_Satisfaction7
21SportsAvg_Usage130
22SportsAvg_Satisfaction8
23TourismAvg_Usage75
24TourismAvg_Satisfaction7



To Visit My Previous Different Types Of Oils Dataset:Click Here
To Visit My Previous Different Types Of Series 2025 Dataset:Click Here
To Visit My Previous Analyzing Yoga Asanas Worldwide Dataset:Click Here
To Visit My Previous Analyzing Indian Languages Dataset:Click Here  



Follow Us On : 


 


--- FOLLOW OUR BLOG FOR MORE INFORMATION.

--->PLEASE DO COMMENTS AND SHARE OUR BLOG.




Comments

Popular posts from this blog

397.If a satellite has excellent signal strength but very high latency, can it still deliver good quality communication? Why or why not?A Sas Study

401.How Efficient Are Global Data Centers? A Complete SAS Analytics Study

383.Which Pharma Distributors Are High-Risk? Can SAS Detect Delays, Temperature Violations, and Fraud?