Monday, 29 December 2025

354.VIRTUAL REALITY (VR) APPLICATIONS DATA ANALYSIS USING DATA STEP | PROC SQL | PROC MEANS | PROC SGPLOT | MACROS | DATE FUNCTIONS (MDY | INTCK | INTNX) | MERGE | APPEND | TRANSPOSE

VIRTUAL REALITY (VR) APPLICATIONS DATA ANALYSIS USING DATA STEP | PROC SQL | PROC MEANS | PROC SGPLOT | MACROS | DATE FUNCTIONS (MDY | INTCK | INTNX) | MERGE | APPEND | TRANSPOSE

options nocenter;

1.VR APPS DATASET CREATION

data vr_apps;

    format Launch_Date Review_Date date9.;

    input App_Name $12. Industry $15. Usage_Hours User_Satisfaction Complexity $8. Cost

           Launch_Date :date9. Review_Date :date9.;

datalines;

MediVR       Healthcare     120 9 High    15000 15JAN2020 10JAN2024

EduSimVR     Education      90  8 Medium   8000 20MAR2021 05JAN2024

BuildXR      Construction   110 8 High    20000 01JUN2019 08JAN2024

GameSphere   Gaming         200 9 Medium  12000 10DEC2022 09JAN2024

TourVista    Tourism        75  7 Low      6000 25FEB2021 06JAN2024

TrainProVR   Corporate      160 8 High    18000 30JUL2018 11JAN2024

DefenseSim   Defense        190 9 High    25000 10OCT2017 12JAN2024

RetailXR     Retail         85  7 Medium   7000 05MAY2020 04JAN2024

AutoDesignVR Manufacturing  140 8 High    22000 14AUG2019 10JAN2024

SportsArena  Sports         130 8 Medium  10000 18NOV2021 09JAN2024

TherapyVR    Healthcare     100 9 Medium  14000 22APR2020 07JAN2024

MuseumWalk   Culture        60  7 Low      5000 01JAN2022 03JAN2024

RemoteMeetVR IT             170 8 Medium  16000 12SEP2020 11JAN2024

;

run;

proc print data=vr_apps;

run;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCost
115JAN202010JAN2024MediVRHealthcare1209High15000
220MAR202105JAN2024EduSimVREducation908Medium8000
301JUN201908JAN2024BuildXRConstruction1108High20000
410DEC202209JAN2024GameSphereGaming2009Medium12000
525FEB202106JAN2024TourVistaTourism757Low6000
630JUL201811JAN2024TrainProVRCorporate1608High18000
710OCT201712JAN2024DefenseSimDefense1909High25000
805MAY202004JAN2024RetailXRRetail857Medium7000
914AUG201910JAN2024AutoDesignVRManufacturing1408High22000
1018NOV202109JAN2024SportsArenaSports1308Medium10000
1122APR202007JAN2024TherapyVRHealthcare1009Medium14000
1201JAN202203JAN2024MuseumWalkCulture607Low5000
1312SEP202011JAN2024RemoteMeetVRIT1708Medium16000


2.DATE FUNCTIONS: MDY, INTCK, INTNX

Creating Derived Date Variables

data vr_dates;

    set vr_apps;


    /* Create standardized review date */

    Standard_Review = mdy(1,1,2024);


    /* Years since launch */

    Years_Since_Launch = intck('year', Launch_Date, Review_Date);


    /* Next annual review */

    Next_Review = intnx('year', Review_Date, 1, 'same');


    format Standard_Review Next_Review date9.;

run;

proc print data=vr_dates;

run;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCostStandard_ReviewYears_Since_LaunchNext_Review
115JAN202010JAN2024MediVRHealthcare1209High1500001JAN2024410JAN2025
220MAR202105JAN2024EduSimVREducation908Medium800001JAN2024305JAN2025
301JUN201908JAN2024BuildXRConstruction1108High2000001JAN2024508JAN2025
410DEC202209JAN2024GameSphereGaming2009Medium1200001JAN2024209JAN2025
525FEB202106JAN2024TourVistaTourism757Low600001JAN2024306JAN2025
630JUL201811JAN2024TrainProVRCorporate1608High1800001JAN2024611JAN2025
710OCT201712JAN2024DefenseSimDefense1909High2500001JAN2024712JAN2025
805MAY202004JAN2024RetailXRRetail857Medium700001JAN2024404JAN2025
914AUG201910JAN2024AutoDesignVRManufacturing1408High2200001JAN2024510JAN2025
1018NOV202109JAN2024SportsArenaSports1308Medium1000001JAN2024309JAN2025
1122APR202007JAN2024TherapyVRHealthcare1009Medium1400001JAN2024407JAN2025
1201JAN202203JAN2024MuseumWalkCulture607Low500001JAN2024203JAN2025
1312SEP202011JAN2024RemoteMeetVRIT1708Medium1600001JAN2024411JAN2025


3.PROC SQL – INDUSTRY LEVEL ANALYSIS

proc sql;

    create table industry_summary as

    select Industry,

           count(App_Name) as Total_Apps,

           avg(Usage_Hours) as Avg_Usage,

           avg(User_Satisfaction) as Avg_Satisfaction,

           sum(Cost) as Total_Cost

    from vr_apps

    group by Industry;

quit;

proc print data=industry_summary;

run;

OUTPUT:

ObsIndustryTotal_AppsAvg_UsageAvg_SatisfactionTotal_Cost
1Construction1110820000
2Corporate1160818000
3Culture16075000
4Defense1190925000
5Education19088000
6Gaming1200912000
7Healthcare2110929000
8IT1170816000
9Manufacturing1140822000
10Retail18577000
11Sports1130810000
12Tourism17576000


4.PROC MEANS – STATISTICAL SUMMARY

proc means data=vr_apps mean min max;

    var Usage_Hours User_Satisfaction Cost;

run;

OUTPUT:

The MEANS Procedure

VariableMeanMinimumMaximum
Usage_Hours
User_Satisfaction
Cost
125.3846154
8.0769231
13692.31
60.0000000
7.0000000
5000.00
200.0000000
9.0000000
25000.00

5.MACROS – AUTOMATED CATEGORIZATION

Macro for Cost Category

%macro cost_category;

data vr_cost_cat;

    set vr_apps;

    length Cost_Category $10;


    if Cost < 8000 then Cost_Category = "Low";

    else if Cost < 15000 then Cost_Category = "Medium";

    else Cost_Category = "High";

run;

proc print data=vr_cost_cat;

run;

%mend;


%cost_category;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCostCost_Category
115JAN202010JAN2024MediVRHealthcare1209High15000High
220MAR202105JAN2024EduSimVREducation908Medium8000Medium
301JUN201908JAN2024BuildXRConstruction1108High20000High
410DEC202209JAN2024GameSphereGaming2009Medium12000Medium
525FEB202106JAN2024TourVistaTourism757Low6000Low
630JUL201811JAN2024TrainProVRCorporate1608High18000High
710OCT201712JAN2024DefenseSimDefense1909High25000High
805MAY202004JAN2024RetailXRRetail857Medium7000Low
914AUG201910JAN2024AutoDesignVRManufacturing1408High22000High
1018NOV202109JAN2024SportsArenaSports1308Medium10000Medium
1122APR202007JAN2024TherapyVRHealthcare1009Medium14000Medium
1201JAN202203JAN2024MuseumWalkCulture607Low5000Low
1312SEP202011JAN2024RemoteMeetVRIT1708Medium16000High


6.PROC SGPLOT – VISUALIZATION

Usage Hours by Industry

proc sgplot data=vr_apps;

    vbar Industry / response=Usage_Hours stat=mean;

    title "Average VR Usage Hours by Industry";

run;

OUTPUT:

The SGPlot Procedure


Satisfaction vs Cost

proc sgplot data=vr_apps;

    scatter x=Cost y=User_Satisfaction;

    title "User Satisfaction vs Cost of VR Applications";

run;

OUTPUT:

The SGPlot Procedure


7.PROC APPEND – ADDITIONAL DATA

data vr_new;

    format Launch_Date Review_Date date9.;

input App_Name $12. Industry $ Usage_Hours User_Satisfaction Complexity $8. Cost

           Launch_Date:date9.  Review_Date:date9. ;

datalines;

CityPlanVR  Urban 95 8 Medium  9000   01JAN2023   10JAN2024

;

run;

proc print data=vr_new;

run;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCost
101JAN202310JAN2024CityPlanVRUrban958Medium9000


proc append base=vr_apps 

            data=vr_new;

run;

proc print data=vr_apps;

run;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCost
115JAN202010JAN2024MediVRHealthcare1209High15000
220MAR202105JAN2024EduSimVREducation908Medium8000
301JUN201908JAN2024BuildXRConstruction1108High20000
410DEC202209JAN2024GameSphereGaming2009Medium12000
525FEB202106JAN2024TourVistaTourism757Low6000
630JUL201811JAN2024TrainProVRCorporate1608High18000
710OCT201712JAN2024DefenseSimDefense1909High25000
805MAY202004JAN2024RetailXRRetail857Medium7000
914AUG201910JAN2024AutoDesignVRManufacturing1408High22000
1018NOV202109JAN2024SportsArenaSports1308Medium10000
1122APR202007JAN2024TherapyVRHealthcare1009Medium14000
1201JAN202203JAN2024MuseumWalkCulture607Low5000
1312SEP202011JAN2024RemoteMeetVRIT1708Medium16000
1401JAN202310JAN2024CityPlanVRUrban958Medium9000


8.PROC MERGE – COMBINING DATASETS

proc sort data=vr_apps; by App_Name; run;

proc print data=vr_apps;

run;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCost
114AUG201910JAN2024AutoDesignVRManufacturing1408High22000
201JUN201908JAN2024BuildXRConstruction1108High20000
301JAN202310JAN2024CityPlanVRUrban958Medium9000
410OCT201712JAN2024DefenseSimDefense1909High25000
520MAR202105JAN2024EduSimVREducation908Medium8000
610DEC202209JAN2024GameSphereGaming2009Medium12000
715JAN202010JAN2024MediVRHealthcare1209High15000
801JAN202203JAN2024MuseumWalkCulture607Low5000
912SEP202011JAN2024RemoteMeetVRIT1708Medium16000
1005MAY202004JAN2024RetailXRRetail857Medium7000
1118NOV202109JAN2024SportsArenaSports1308Medium10000
1222APR202007JAN2024TherapyVRHealthcare1009Medium14000
1325FEB202106JAN2024TourVistaTourism757Low6000
1430JUL201811JAN2024TrainProVRCorporate1608High18000


proc sort data=vr_cost_cat; by App_Name; run;

proc print data=vr_cost_cat;

run;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCostCost_Category
114AUG201910JAN2024AutoDesignVRManufacturing1408High22000High
201JUN201908JAN2024BuildXRConstruction1108High20000High
310OCT201712JAN2024DefenseSimDefense1909High25000High
420MAR202105JAN2024EduSimVREducation908Medium8000Medium
510DEC202209JAN2024GameSphereGaming2009Medium12000Medium
615JAN202010JAN2024MediVRHealthcare1209High15000High
701JAN202203JAN2024MuseumWalkCulture607Low5000Low
812SEP202011JAN2024RemoteMeetVRIT1708Medium16000High
905MAY202004JAN2024RetailXRRetail857Medium7000Low
1018NOV202109JAN2024SportsArenaSports1308Medium10000Medium
1122APR202007JAN2024TherapyVRHealthcare1009Medium14000Medium
1225FEB202106JAN2024TourVistaTourism757Low6000Low
1330JUL201811JAN2024TrainProVRCorporate1608High18000High


data vr_merged;

    merge vr_apps vr_cost_cat;

    by App_Name;

run;

proc print data=vr_merged;

run;

OUTPUT:

ObsLaunch_DateReview_DateApp_NameIndustryUsage_HoursUser_SatisfactionComplexityCostCost_Category
114AUG201910JAN2024AutoDesignVRManufacturing1408High22000High
201JUN201908JAN2024BuildXRConstruction1108High20000High
301JAN202310JAN2024CityPlanVRUrban958Medium9000 
410OCT201712JAN2024DefenseSimDefense1909High25000High
520MAR202105JAN2024EduSimVREducation908Medium8000Medium
610DEC202209JAN2024GameSphereGaming2009Medium12000Medium
715JAN202010JAN2024MediVRHealthcare1209High15000High
801JAN202203JAN2024MuseumWalkCulture607Low5000Low
912SEP202011JAN2024RemoteMeetVRIT1708Medium16000High
1005MAY202004JAN2024RetailXRRetail857Medium7000Low
1118NOV202109JAN2024SportsArenaSports1308Medium10000Medium
1222APR202007JAN2024TherapyVRHealthcare1009Medium14000Medium
1325FEB202106JAN2024TourVistaTourism757Low6000Low
1430JUL201811JAN2024TrainProVRCorporate1608High18000High


9.PROC TRANSPOSE – RESHAPING DATA

proc transpose data=industry_summary out=industry_trans;

    by Industry;

    var Avg_Usage Avg_Satisfaction;

run;

proc print data=industry_trans;

run;

OUTPUT:

ObsIndustry_NAME_COL1
1ConstructionAvg_Usage110
2ConstructionAvg_Satisfaction8
3CorporateAvg_Usage160
4CorporateAvg_Satisfaction8
5CultureAvg_Usage60
6CultureAvg_Satisfaction7
7DefenseAvg_Usage190
8DefenseAvg_Satisfaction9
9EducationAvg_Usage90
10EducationAvg_Satisfaction8
11GamingAvg_Usage200
12GamingAvg_Satisfaction9
13HealthcareAvg_Usage110
14HealthcareAvg_Satisfaction9
15ITAvg_Usage170
16ITAvg_Satisfaction8
17ManufacturingAvg_Usage140
18ManufacturingAvg_Satisfaction8
19RetailAvg_Usage85
20RetailAvg_Satisfaction7
21SportsAvg_Usage130
22SportsAvg_Satisfaction8
23TourismAvg_Usage75
24TourismAvg_Satisfaction7



To Visit My Previous Different Types Of Oils Dataset:Click Here
To Visit My Previous Different Types Of Series 2025 Dataset:Click Here
To Visit My Previous Analyzing Yoga Asanas Worldwide Dataset:Click Here
To Visit My Previous Analyzing Indian Languages Dataset:Click Here  



Follow Us On : 


 


--- FOLLOW OUR BLOG FOR MORE INFORMATION.

--->PLEASE DO COMMENTS AND SHARE OUR BLOG.




No comments:

Post a Comment