203.ANALYZING | GLOBAL | AUDI | AQUARIUM | FISH | INVENTORY | USING | PROC PRINT | PROC MEANS | PROC FREQ | PROC SQL | PROC MACRO | PROC FORMAT | PROC REPORT | PROC TRANSPOSE | PROC SORT | PROC GCHART | PROC UNIVARIATE | PROC RANK | DATA CLEANING| METADATA | AUTOMATION | VALIDATION | MERGING | SAS POWER
- Get link
- X
- Other Apps
ANALYZING | GLOBAL | AUDI | AQUARIUM | FISH | INVENTORY | USING | PROC PRINT | PROC MEANS | PROC FREQ | PROC SQL | PROC MACRO | PROC FORMAT | PROC REPORT | PROC TRANSPOSE | PROC SORT | PROC GCHART | PROC UNIVARIATE | PROC RANK | DATA CLEANING| METADATA | AUTOMATION | VALIDATION | MERGING | SAS POWER
/*A dataset of different types of fishes */
1.Creating the Fishes Dataset
data audi_fishes;
length FishID $8 Species $15 Origin $15 Tank_Type $15;
input FishID $ Species $ Origin $ Tank_Type $ Size_cm Temperature $ Price_per_fish;
datalines;
F001 Guppy India Freshwater 5 Cold 200
F002 Betta Thailand Freshwater 7 Warm 350
F003 Goldfish China Freshwater 15 Cold 250
F004 Clownfish Australia Saltwater 11 Warm 1200
F005 NeonTetra Brazil Freshwater 4 Cold 180
F006 Discus Peru Freshwater 18 Warm 1500
F007 Angelfish Colombia Freshwater 12 Warm 950
F008 Koi Japan Freshwater 25 Cold 2500
F009 Molly Mexico Freshwater 6 Warm 300
F010 Tetra Congo Freshwater 5 Cold 170
F011 Gourami India Freshwater 10 Warm 600
F012 Oscar USA Freshwater 20 Warm 1800
F013 Puffer Maldives Saltwater 14 Warm 2200
F014 Seahorse Indonesia Saltwater 6 Warm 2600
F015 Snapper Australia Saltwater 30 Warm 3000
F016 Arowana Malaysia Freshwater 35 Warm 5000
F017 Catfish Vietnam Freshwater 22 Cold 1000
;
run;
proc print;run;
Output:
Obs | FishID | Species | Origin | Tank_Type | Size_cm | Temperature | Price_per_fish |
---|---|---|---|---|---|---|---|
1 | F001 | Guppy | India | Freshwater | 5 | Cold | 200 |
2 | F002 | Betta | Thailand | Freshwater | 7 | Warm | 350 |
3 | F003 | Goldfish | China | Freshwater | 15 | Cold | 250 |
4 | F004 | Clownfish | Australia | Saltwater | 11 | Warm | 1200 |
5 | F005 | NeonTetra | Brazil | Freshwater | 4 | Cold | 180 |
6 | F006 | Discus | Peru | Freshwater | 18 | Warm | 1500 |
7 | F007 | Angelfish | Colombia | Freshwater | 12 | Warm | 950 |
8 | F008 | Koi | Japan | Freshwater | 25 | Cold | 2500 |
9 | F009 | Molly | Mexico | Freshwater | 6 | Warm | 300 |
10 | F010 | Tetra | Congo | Freshwater | 5 | Cold | 170 |
11 | F011 | Gourami | India | Freshwater | 10 | Warm | 600 |
12 | F012 | Oscar | USA | Freshwater | 20 | Warm | 1800 |
13 | F013 | Puffer | Maldives | Saltwater | 14 | Warm | 2200 |
14 | F014 | Seahorse | Indonesia | Saltwater | 6 | Warm | 2600 |
15 | F015 | Snapper | Australia | Saltwater | 30 | Warm | 3000 |
16 | F016 | Arowana | Malaysia | Freshwater | 35 | Warm | 5000 |
17 | F017 | Catfish | Vietnam | Freshwater | 22 | Cold | 1000 |
2.PROC PRINT – Displaying the Dataset
proc print data=audi_fishes;
title "Audi Aquarium Fish Inventory - Initial Dataset";
run;
Output:
Audi Aquarium Fish Inventory - Initial Dataset |
Obs | FishID | Species | Origin | Tank_Type | Size_cm | Temperature | Price_per_fish |
---|---|---|---|---|---|---|---|
1 | F001 | Guppy | India | Freshwater | 5 | Cold | 200 |
2 | F002 | Betta | Thailand | Freshwater | 7 | Warm | 350 |
3 | F003 | Goldfish | China | Freshwater | 15 | Cold | 250 |
4 | F004 | Clownfish | Australia | Saltwater | 11 | Warm | 1200 |
5 | F005 | NeonTetra | Brazil | Freshwater | 4 | Cold | 180 |
6 | F006 | Discus | Peru | Freshwater | 18 | Warm | 1500 |
7 | F007 | Angelfish | Colombia | Freshwater | 12 | Warm | 950 |
8 | F008 | Koi | Japan | Freshwater | 25 | Cold | 2500 |
9 | F009 | Molly | Mexico | Freshwater | 6 | Warm | 300 |
10 | F010 | Tetra | Congo | Freshwater | 5 | Cold | 170 |
11 | F011 | Gourami | India | Freshwater | 10 | Warm | 600 |
12 | F012 | Oscar | USA | Freshwater | 20 | Warm | 1800 |
13 | F013 | Puffer | Maldives | Saltwater | 14 | Warm | 2200 |
14 | F014 | Seahorse | Indonesia | Saltwater | 6 | Warm | 2600 |
15 | F015 | Snapper | Australia | Saltwater | 30 | Warm | 3000 |
16 | F016 | Arowana | Malaysia | Freshwater | 35 | Warm | 5000 |
17 | F017 | Catfish | Vietnam | Freshwater | 22 | Cold | 1000 |
3.PROC SORT – Sorting by Origin
proc sort data=audi_fishes out=sorted_fishes;
by Origin;
run;
proc print data=sorted_fishes;
title "Fishes Sorted by Origin";
run;
Output:
Fishes Sorted by Origin |
Obs | FishID | Species | Origin | Tank_Type | Size_cm | Temperature | Price_per_fish |
---|---|---|---|---|---|---|---|
1 | F004 | Clownfish | Australia | Saltwater | 11 | Warm | 1200 |
2 | F015 | Snapper | Australia | Saltwater | 30 | Warm | 3000 |
3 | F005 | NeonTetra | Brazil | Freshwater | 4 | Cold | 180 |
4 | F003 | Goldfish | China | Freshwater | 15 | Cold | 250 |
5 | F007 | Angelfish | Colombia | Freshwater | 12 | Warm | 950 |
6 | F010 | Tetra | Congo | Freshwater | 5 | Cold | 170 |
7 | F001 | Guppy | India | Freshwater | 5 | Cold | 200 |
8 | F011 | Gourami | India | Freshwater | 10 | Warm | 600 |
9 | F014 | Seahorse | Indonesia | Saltwater | 6 | Warm | 2600 |
10 | F008 | Koi | Japan | Freshwater | 25 | Cold | 2500 |
11 | F016 | Arowana | Malaysia | Freshwater | 35 | Warm | 5000 |
12 | F013 | Puffer | Maldives | Saltwater | 14 | Warm | 2200 |
13 | F009 | Molly | Mexico | Freshwater | 6 | Warm | 300 |
14 | F006 | Discus | Peru | Freshwater | 18 | Warm | 1500 |
15 | F002 | Betta | Thailand | Freshwater | 7 | Warm | 350 |
16 | F012 | Oscar | USA | Freshwater | 20 | Warm | 1800 |
17 | F017 | Catfish | Vietnam | Freshwater | 22 | Cold | 1000 |
4.PROC FREQ – Frequency of Tank Types and Temperature Preferences
proc freq data=audi_fishes;
tables Tank_Type Temperature / nocum;
title "Distribution of Fish Tank Types and Temperature Preferences";
run;
Output:
Distribution of Fish Tank Types and Temperature Preferences |
Tank_Type | Frequency | Percent |
---|---|---|
Freshwater | 13 | 76.47 |
Saltwater | 4 | 23.53 |
Temperature | Frequency | Percent |
---|---|---|
Cold | 6 | 35.29 |
Warm | 11 | 64.71 |
5.PROC MEANS – Average and Maximum Price by Tank Type
proc means data=audi_fishes mean maxdec=2 max;
class Tank_Type;
var Price_per_fish;
title "Average and Maximum Price by Tank Type";
run;
Output:
Average and Maximum Price by Tank Type |
Analysis Variable : Price_per_fish | |||
---|---|---|---|
Tank_Type | N Obs | Mean | Maximum |
Freshwater | 13 | 1138.46 | 5000.00 |
Saltwater | 4 | 2250.00 | 3000.00 |
6.PROC FORMAT – Custom Format for Fish Size
proc format;
value sizefmt
low-10 = 'Small'
11-20 = 'Medium'
21-high = 'Large';
run;
data audi_fishes_fmt;
set audi_fishes;
Size_Category = put(Size_cm, sizefmt.);
run;
proc print;run;
Output:
Obs | FishID | Species | Origin | Tank_Type | Size_cm | Temperature | Price_per_fish | Size_Category |
---|---|---|---|---|---|---|---|---|
1 | F001 | Guppy | India | Freshwater | 5 | Cold | 200 | Small |
2 | F002 | Betta | Thailand | Freshwater | 7 | Warm | 350 | Small |
3 | F003 | Goldfish | China | Freshwater | 15 | Cold | 250 | Medium |
4 | F004 | Clownfish | Australia | Saltwater | 11 | Warm | 1200 | Medium |
5 | F005 | NeonTetra | Brazil | Freshwater | 4 | Cold | 180 | Small |
6 | F006 | Discus | Peru | Freshwater | 18 | Warm | 1500 | Medium |
7 | F007 | Angelfish | Colombia | Freshwater | 12 | Warm | 950 | Medium |
8 | F008 | Koi | Japan | Freshwater | 25 | Cold | 2500 | Large |
9 | F009 | Molly | Mexico | Freshwater | 6 | Warm | 300 | Small |
10 | F010 | Tetra | Congo | Freshwater | 5 | Cold | 170 | Small |
11 | F011 | Gourami | India | Freshwater | 10 | Warm | 600 | Small |
12 | F012 | Oscar | USA | Freshwater | 20 | Warm | 1800 | Medium |
13 | F013 | Puffer | Maldives | Saltwater | 14 | Warm | 2200 | Medium |
14 | F014 | Seahorse | Indonesia | Saltwater | 6 | Warm | 2600 | Small |
15 | F015 | Snapper | Australia | Saltwater | 30 | Warm | 3000 | Large |
16 | F016 | Arowana | Malaysia | Freshwater | 35 | Warm | 5000 | Large |
17 | F017 | Catfish | Vietnam | Freshwater | 22 | Cold | 1000 | Large |
proc freq data=audi_fishes_fmt;
tables Size_Category;
title "Frequency of Fish by Size Category";
run;
Output:
Frequency of Fish by Size Category |
Size_Category | Frequency | Percent | Cumulative Frequency |
Cumulative Percent |
---|---|---|---|---|
Large | 4 | 23.53 | 4 | 23.53 |
Medium | 6 | 35.29 | 10 | 58.82 |
Small | 7 | 41.18 | 17 | 100.00 |
7.PROC SQL – Top 5 Most Expensive Fish
proc sql outobs=5;
title "Top 5 Most Expensive Fishes in Audi Aquarium";
select FishID, Species, Price_per_fish
from audi_fishes
order by Price_per_fish desc;
quit;
Output:
Top 5 Most Expensive Fishes in Audi Aquarium |
FishID | Species | Price_per_fish |
---|---|---|
F016 | Arowana | 5000 |
F015 | Snapper | 3000 |
F014 | Seahorse | 2600 |
F008 | Koi | 2500 |
F013 | Puffer | 2200 |
8.PROC TRANSPOSE – Convert Species per Origin
proc transpose data=audi_fishes out=transposed_fishes prefix=Fish_;
by Origin notsorted;
id Species;
var Price_per_fish;
run;
proc print data=transposed_fishes;
title "Transposed Fish Prices by Origin";
run;
Output:
Transposed Fish Prices by Origin |
Obs | Origin | _NAME_ | Fish_Guppy | Fish_Betta | Fish_Goldfish | Fish_Clownfish | Fish_NeonTetra | Fish_Discus | Fish_Angelfish | Fish_Koi | Fish_Molly | Fish_Tetra | Fish_Gourami | Fish_Oscar | Fish_Puffer | Fish_Seahorse | Fish_Snapper | Fish_Arowana | Fish_Catfish |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | India | Price_per_fish | 200 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
2 | Thailand | Price_per_fish | . | 350 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
3 | China | Price_per_fish | . | . | 250 | . | . | . | . | . | . | . | . | . | . | . | . | . | . |
4 | Australia | Price_per_fish | . | . | . | 1200 | . | . | . | . | . | . | . | . | . | . | . | . | . |
5 | Brazil | Price_per_fish | . | . | . | . | 180 | . | . | . | . | . | . | . | . | . | . | . | . |
6 | Peru | Price_per_fish | . | . | . | . | . | 1500 | . | . | . | . | . | . | . | . | . | . | . |
7 | Colombia | Price_per_fish | . | . | . | . | . | . | 950 | . | . | . | . | . | . | . | . | . | . |
8 | Japan | Price_per_fish | . | . | . | . | . | . | . | 2500 | . | . | . | . | . | . | . | . | . |
9 | Mexico | Price_per_fish | . | . | . | . | . | . | . | . | 300 | . | . | . | . | . | . | . | . |
10 | Congo | Price_per_fish | . | . | . | . | . | . | . | . | . | 170 | . | . | . | . | . | . | . |
11 | India | Price_per_fish | . | . | . | . | . | . | . | . | . | . | 600 | . | . | . | . | . | . |
12 | USA | Price_per_fish | . | . | . | . | . | . | . | . | . | . | . | 1800 | . | . | . | . | . |
13 | Maldives | Price_per_fish | . | . | . | . | . | . | . | . | . | . | . | . | 2200 | . | . | . | . |
14 | Indonesia | Price_per_fish | . | . | . | . | . | . | . | . | . | . | . | . | . | 2600 | . | . | . |
15 | Australia | Price_per_fish | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 3000 | . | . |
16 | Malaysia | Price_per_fish | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 5000 | . |
17 | Vietnam | Price_per_fish | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 1000 |
9.PROC GCHART – Bar Chart of Fish Counts by Origin
proc gchart data=audi_fishes;
vbar Origin / discrete type=freq;
title "Fish Count by Country of Origin";
run;
quit;
Log:
10.PROC REPORT – Summary Report of Freshwater vs Saltwater Fishes
proc report data=audi_fishes nowd;
column Tank_Type Size_cm Price_per_fish;
define Tank_Type / group;
define Size_cm / analysis mean;
define Price_per_fish / analysis sum;
title "Summary Report: Tank Type vs Average Size and Total Price";
run;
Output:
Summary Report: Tank Type vs Average Size and Total Price |
Tank_Type | Size_cm | Price_per_fish |
---|---|---|
Freshwater | 14.153846 | 14800 |
Saltwater | 15.25 | 9000 |
11.Using Macros – Reusable Analysis by Temperature
%macro analyze_temp(temp);
proc sql;
title "Fish Analysis for Temperature: &temp.";
select Species, Origin, Price_per_fish
from audi_fishes
where Temperature="&temp."
order by Price_per_fish desc;
quit;
%mend;
%analyze_temp(Warm);
Output:
Fish Analysis for Temperature: Warm |
Species | Origin | Price_per_fish |
---|---|---|
Arowana | Malaysia | 5000 |
Snapper | Australia | 3000 |
Seahorse | Indonesia | 2600 |
Puffer | Maldives | 2200 |
Oscar | USA | 1800 |
Discus | Peru | 1500 |
Clownfish | Australia | 1200 |
Angelfish | Colombia | 950 |
Gourami | India | 600 |
Betta | Thailand | 350 |
Molly | Mexico | 300 |
%analyze_temp(Cold);
Output:
Fish Analysis for Temperature: Cold |
Species | Origin | Price_per_fish |
---|---|---|
Koi | Japan | 2500 |
Catfish | Vietnam | 1000 |
Goldfish | China | 250 |
Guppy | India | 200 |
NeonTetra | Brazil | 180 |
Tetra | Congo | 170 |
12.PROC SQL JOIN – Combine with Inventory Table
data fish_stock;
input FishID $ Quantity Available;
datalines;
F001 25 1
F002 30 1
F003 20 1
F004 5 1
F005 40 1
F006 3 1
F007 6 1
F008 2 1
F009 10 1
F010 50 1
F011 7 1
F012 4 1
F013 2 1
F014 1 1
F015 1 1
F016 1 1
F017 8 1
;
run;
proc print;run;
Output:
Obs | FishID | Quantity | Available |
---|---|---|---|
1 | F001 | 25 | 1 |
2 | F002 | 30 | 1 |
3 | F003 | 20 | 1 |
4 | F004 | 5 | 1 |
5 | F005 | 40 | 1 |
6 | F006 | 3 | 1 |
7 | F007 | 6 | 1 |
8 | F008 | 2 | 1 |
9 | F009 | 10 | 1 |
10 | F010 | 50 | 1 |
11 | F011 | 7 | 1 |
12 | F012 | 4 | 1 |
13 | F013 | 2 | 1 |
14 | F014 | 1 | 1 |
15 | F015 | 1 | 1 |
16 | F016 | 1 | 1 |
17 | F017 | 8 | 1 |
proc sql;
create table fish_full as
select a.*, b.Quantity, b.Available
from audi_fishes a
inner join fish_stock b
on a.FishID = b.FishID;
quit;
proc print data=fish_full;
title "Combined Fish Dataset with Quantity and Availability";
run;
Output:
Combined Fish Dataset with Quantity and Availability |
Obs | FishID | Species | Origin | Tank_Type | Size_cm | Temperature | Price_per_fish | Quantity | Available |
---|---|---|---|---|---|---|---|---|---|
1 | F001 | Guppy | India | Freshwater | 5 | Cold | 200 | 25 | 1 |
2 | F002 | Betta | Thailand | Freshwater | 7 | Warm | 350 | 30 | 1 |
3 | F003 | Goldfish | China | Freshwater | 15 | Cold | 250 | 20 | 1 |
4 | F004 | Clownfish | Australia | Saltwater | 11 | Warm | 1200 | 5 | 1 |
5 | F005 | NeonTetra | Brazil | Freshwater | 4 | Cold | 180 | 40 | 1 |
6 | F006 | Discus | Peru | Freshwater | 18 | Warm | 1500 | 3 | 1 |
7 | F007 | Angelfish | Colombia | Freshwater | 12 | Warm | 950 | 6 | 1 |
8 | F008 | Koi | Japan | Freshwater | 25 | Cold | 2500 | 2 | 1 |
9 | F009 | Molly | Mexico | Freshwater | 6 | Warm | 300 | 10 | 1 |
10 | F010 | Tetra | Congo | Freshwater | 5 | Cold | 170 | 50 | 1 |
11 | F011 | Gourami | India | Freshwater | 10 | Warm | 600 | 7 | 1 |
12 | F012 | Oscar | USA | Freshwater | 20 | Warm | 1800 | 4 | 1 |
13 | F013 | Puffer | Maldives | Saltwater | 14 | Warm | 2200 | 2 | 1 |
14 | F014 | Seahorse | Indonesia | Saltwater | 6 | Warm | 2600 | 1 | 1 |
15 | F015 | Snapper | Australia | Saltwater | 30 | Warm | 3000 | 1 | 1 |
16 | F016 | Arowana | Malaysia | Freshwater | 35 | Warm | 5000 | 1 | 1 |
17 | F017 | Catfish | Vietnam | Freshwater | 22 | Cold | 1000 | 8 | 1 |
13.PROC MEANS on Joined Dataset – Total Inventory Value
data fish_full;
set fish_full;
Total_Value = Price_per_fish * Quantity;
run;
proc print;run;
Output:
Obs | FishID | Species | Origin | Tank_Type | Size_cm | Temperature | Price_per_fish | Quantity | Available | Total_Value |
---|---|---|---|---|---|---|---|---|---|---|
1 | F001 | Guppy | India | Freshwater | 5 | Cold | 200 | 25 | 1 | 5000 |
2 | F002 | Betta | Thailand | Freshwater | 7 | Warm | 350 | 30 | 1 | 10500 |
3 | F003 | Goldfish | China | Freshwater | 15 | Cold | 250 | 20 | 1 | 5000 |
4 | F004 | Clownfish | Australia | Saltwater | 11 | Warm | 1200 | 5 | 1 | 6000 |
5 | F005 | NeonTetra | Brazil | Freshwater | 4 | Cold | 180 | 40 | 1 | 7200 |
6 | F006 | Discus | Peru | Freshwater | 18 | Warm | 1500 | 3 | 1 | 4500 |
7 | F007 | Angelfish | Colombia | Freshwater | 12 | Warm | 950 | 6 | 1 | 5700 |
8 | F008 | Koi | Japan | Freshwater | 25 | Cold | 2500 | 2 | 1 | 5000 |
9 | F009 | Molly | Mexico | Freshwater | 6 | Warm | 300 | 10 | 1 | 3000 |
10 | F010 | Tetra | Congo | Freshwater | 5 | Cold | 170 | 50 | 1 | 8500 |
11 | F011 | Gourami | India | Freshwater | 10 | Warm | 600 | 7 | 1 | 4200 |
12 | F012 | Oscar | USA | Freshwater | 20 | Warm | 1800 | 4 | 1 | 7200 |
13 | F013 | Puffer | Maldives | Saltwater | 14 | Warm | 2200 | 2 | 1 | 4400 |
14 | F014 | Seahorse | Indonesia | Saltwater | 6 | Warm | 2600 | 1 | 1 | 2600 |
15 | F015 | Snapper | Australia | Saltwater | 30 | Warm | 3000 | 1 | 1 | 3000 |
16 | F016 | Arowana | Malaysia | Freshwater | 35 | Warm | 5000 | 1 | 1 | 5000 |
17 | F017 | Catfish | Vietnam | Freshwater | 22 | Cold | 1000 | 8 | 1 | 8000 |
proc means data=fish_full sum;
var Total_Value;
title "Total Inventory Value of All Aquarium Fishes";
run;
Output:
Total Inventory Value of All Aquarium Fishes |
Analysis Variable : Total_Value |
---|
Sum |
94800.00 |
14.PROC SQL – Highest Value Fish by Country
proc sql;
title "Most Valuable Fish by Origin";
select Origin, Species, max(Total_Value) as Max_Value
from fish_full
group by Origin;
quit;
Output:
Most Valuable Fish by Origin |
Origin | Species | Max_Value |
---|---|---|
Australia | Snapper | 6000 |
Australia | Clownfish | 6000 |
Brazil | NeonTetra | 7200 |
China | Goldfish | 5000 |
Colombia | Angelfish | 5700 |
Congo | Tetra | 8500 |
India | Gourami | 5000 |
India | Guppy | 5000 |
Indonesia | Seahorse | 2600 |
Japan | Koi | 5000 |
Malaysia | Arowana | 5000 |
Maldives | Puffer | 4400 |
Mexico | Molly | 3000 |
Peru | Discus | 4500 |
Thailand | Betta | 10500 |
USA | Oscar | 7200 |
Vietnam | Catfish | 8000 |
15.PROC SORT with NODUPKEY – Unique Origins
proc sort data=audi_fishes out=unique_origins nodupkey;
by Origin;
run;
proc print data=unique_origins;
title "Unique Fish Origins in Dataset";
run;
Output:
Unique Fish Origins in Dataset |
Obs | FishID | Species | Origin | Tank_Type | Size_cm | Temperature | Price_per_fish |
---|---|---|---|---|---|---|---|
1 | F004 | Clownfish | Australia | Saltwater | 11 | Warm | 1200 |
2 | F005 | NeonTetra | Brazil | Freshwater | 4 | Cold | 180 |
3 | F003 | Goldfish | China | Freshwater | 15 | Cold | 250 |
4 | F007 | Angelfish | Colombia | Freshwater | 12 | Warm | 950 |
5 | F010 | Tetra | Congo | Freshwater | 5 | Cold | 170 |
6 | F001 | Guppy | India | Freshwater | 5 | Cold | 200 |
7 | F014 | Seahorse | Indonesia | Saltwater | 6 | Warm | 2600 |
8 | F008 | Koi | Japan | Freshwater | 25 | Cold | 2500 |
9 | F016 | Arowana | Malaysia | Freshwater | 35 | Warm | 5000 |
10 | F013 | Puffer | Maldives | Saltwater | 14 | Warm | 2200 |
11 | F009 | Molly | Mexico | Freshwater | 6 | Warm | 300 |
12 | F006 | Discus | Peru | Freshwater | 18 | Warm | 1500 |
13 | F002 | Betta | Thailand | Freshwater | 7 | Warm | 350 |
14 | F012 | Oscar | USA | Freshwater | 20 | Warm | 1800 |
15 | F017 | Catfish | Vietnam | Freshwater | 22 | Cold | 1000 |
To Visit My Previous Sas Macro Functions:Click HereTo Visit My Previous lnput Proc Sql In Sas:Click HereTo Visit My Previous Advanced Clinical Trials:Click HereTo Visit My Previous Urban Traffic Pattern Dataset:Click Here--->PLEASE FOLLOW OUR BLOG FOR MORE INFORMATION.--->PLEASE DO COMMENTS AND SHARE OUR BLOG.PLEASE FOLLOW OUR INSTAGRAM PAGE CLICK HERE
- Get link
- X
- Other Apps
Comments
Post a Comment