Monday, 28 July 2025

251.SELF-DESCRIPTION ANALYSIS OF AI MODULES USING PROC PRINT | PROC SORT | PROC FREQ | PROC MEANS | PROC SQL | MACROS IN SAS

SELF-DESCRIPTION ANALYSIS OF AI MODULES USING PROC PRINT | PROC SORT | PROC FREQ | PROC MEANS | PROC SQL | MACROS IN SAS

/*Creating a dataset of different types of AI personalities or capabilities*/

Dataset Creation:

options nocenter;

data chatgpt_self;

    length 

        AI_ID 8 

        Module_Type $20 

        Capability $25 

        Use_Case $30 

        Response_Style $20

        Confidence_Level 8 

        Trained_Data_Size $15 

        Region_Used $15 

        OpenAI_Version $10;

    

    format Confidence_Level 8.2;


    input 

        AI_ID 

        Module_Type $ 

        Capability $ 

        Use_Case $ 

        Response_Style $ 

        Confidence_Level 

        Trained_Data_Size $ 

        Region_Used $ 

        OpenAI_Version $;


    datalines;

1 Language NLP Chatbot Friendly 98.5 45TB Global GPT-4

2 Language TextSummary ArticleSummarization Formal 95.2 50TB Global GPT-4

3 Vision ObjectDetect SecuritySystems Concise 92.7 65TB USA GPT-4o

4 Reasoning MathGenius ProblemSolving Precise 97.8 48TB Global GPT-4

5 Creative PoetryWriter StoryCreation Artistic 93.6 40TB UK GPT-3.5

6 Multilingual Translator RealTimeTranslate Polite 96.3 55TB Asia GPT-4

7 Healthcare MedSupport MedicalAnalysis Clear 94.1 52TB USA GPT-4

8 Legal LegalAdvisor ContractReview Structured 95.9 47TB Europe GPT-4

9 Coding CodeHelper DebuggingTechnical Codey 97.5 60TB Global GPT-4

10 Retail SalesBot ProductSuggest Cheerful 91.8 42TB USA GPT-4

11 Research DataMiner LiteratureReview Scholarly 94.7 43TB Global GPT-4

12 Financial FinAdvisor InvestmentGuide Formal 96.6 51TB USA GPT-4

13 Education Tutor PersonalizedLearning Calm 92.5 49TB Asia GPT-4

14 Entertainment Screenwriter DialogueWriting Witty 89.9 38TB UK GPT-3.5

15 Emotional EmpathyBot StressSupport Empathetic 88.3 35TB Global GPT-3.5

16 Journalism FactChecker NewsVerification Serious 94.2 53TB USA GPT-4

17 Sports CoachBot TrainingSuggestions Energetic 91.0 39TB Europe GPT-3.5

18 Agriculture AgriAdvisor CropDiagnosis Informative 90.4 37TB India GPT-4

19 Travel GuideBot TravelPlans Fun 89.5 41TB Global GPT-4

20 Space AstroBot SpaceResearch Analytical 93.1 46TB NASA GPT-4

21 Disaster DisasterAlert EmergencyWarning Urgent 92.8 44TB Global GPT-4o

22 Chat CasualTalk CompanionCasual Friendly 87.9 36TB Global GPT-3.5

23 Quantum QAlgoSolver QuantumProblem Precise 95.0 55TB USA GPT-4

24 Robots RoboVision ObjectTracking Robotic 94.4 63TB Global GPT-4o

25 Nutrition DietAdvisor MealPlanning Gentle 90.2 40TB Asia GPT-4

26 AI EthicsAdvisor PolicyFormulation Neutral 93.7 48TB Global GPT-4

27 Gaming GameNarrator VirtualStorytelling Engaging 88.8 42TB USA GPT-3.5

28 HR ResumeFilter CandidateScreening Brief 91.3 45TB Europe GPT-4

29 Marketing AdGenerator CampaignCreation Persuasive 89.7 46TB USA GPT-4

30 Military DefenseBot ThreatAssessment Commanding 96.2 70TB Global GPT-4o

;

run;

proc print;run;

Output:

ObsAI_IDModule_TypeCapabilityUse_CaseResponse_StyleConfidence_LevelTrained_Data_SizeRegion_UsedOpenAI_Version
11LanguageNLPChatbotFriendly98.5045TBGlobalGPT-4
22LanguageTextSummaryArticleSummarizationFormal95.2050TBGlobalGPT-4
33VisionObjectDetectSecuritySystemsConcise92.7065TBUSAGPT-4o
44ReasoningMathGeniusProblemSolvingPrecise97.8048TBGlobalGPT-4
55CreativePoetryWriterStoryCreationArtistic93.6040TBUKGPT-3.5
66MultilingualTranslatorRealTimeTranslatePolite96.3055TBAsiaGPT-4
77HealthcareMedSupportMedicalAnalysisClear94.1052TBUSAGPT-4
88LegalLegalAdvisorContractReviewStructured95.9047TBEuropeGPT-4
99CodingCodeHelperDebuggingTechnicalCodey97.5060TBGlobalGPT-4
1010RetailSalesBotProductSuggestCheerful91.8042TBUSAGPT-4
1111ResearchDataMinerLiteratureReviewScholarly94.7043TBGlobalGPT-4
1212FinancialFinAdvisorInvestmentGuideFormal96.6051TBUSAGPT-4
1313EducationTutorPersonalizedLearningCalm92.5049TBAsiaGPT-4
1414EntertainmentScreenwriterDialogueWritingWitty89.9038TBUKGPT-3.5
1515EmotionalEmpathyBotStressSupportEmpathetic88.3035TBGlobalGPT-3.5
1616JournalismFactCheckerNewsVerificationSerious94.2053TBUSAGPT-4
1717SportsCoachBotTrainingSuggestionsEnergetic91.0039TBEuropeGPT-3.5
1818AgricultureAgriAdvisorCropDiagnosisInformative90.4037TBIndiaGPT-4
1919TravelGuideBotTravelPlansFun89.5041TBGlobalGPT-4
2020SpaceAstroBotSpaceResearchAnalytical93.1046TBNASAGPT-4
2121DisasterDisasterAlertEmergencyWarningUrgent92.8044TBGlobalGPT-4o
2222ChatCasualTalkCompanionCasualFriendly87.9036TBGlobalGPT-3.5
2323QuantumQAlgoSolverQuantumProblemPrecise95.0055TBUSAGPT-4
2424RobotsRoboVisionObjectTrackingRobotic94.4063TBGlobalGPT-4o
2525NutritionDietAdvisorMealPlanningGentle90.2040TBAsiaGPT-4
2626AIEthicsAdvisorPolicyFormulationNeutral93.7048TBGlobalGPT-4
2727GamingGameNarratorVirtualStorytellingEngaging88.8042TBUSAGPT-3.5
2828HRResumeFilterCandidateScreeningBrief91.3045TBEuropeGPT-4
2929MarketingAdGeneratorCampaignCreationPersuasive89.7046TBUSAGPT-4
3030MilitaryDefenseBotThreatAssessmentCommanding96.2070TBGlobalGPT-4o


Step 1: Data Exploration using PROC PRINT

proc print data=chatgpt_self(obs=10);

 title "First 10 Records Of ChatGPT Self-Description Dataset";

run;

 Output:

First 10 Records Of ChatGPT Self-Description Dataset

ObsAI_IDModule_TypeCapabilityUse_CaseResponse_StyleConfidence_LevelTrained_Data_SizeRegion_UsedOpenAI_Version
11LanguageNLPChatbotFriendly98.5045TBGlobalGPT-4
22LanguageTextSummaryArticleSummarizationFormal95.2050TBGlobalGPT-4
33VisionObjectDetectSecuritySystemsConcise92.7065TBUSAGPT-4o
44ReasoningMathGeniusProblemSolvingPrecise97.8048TBGlobalGPT-4
55CreativePoetryWriterStoryCreationArtistic93.6040TBUKGPT-3.5
66MultilingualTranslatorRealTimeTranslatePolite96.3055TBAsiaGPT-4
77HealthcareMedSupportMedicalAnalysisClear94.1052TBUSAGPT-4
88LegalLegalAdvisorContractReviewStructured95.9047TBEuropeGPT-4
99CodingCodeHelperDebuggingTechnicalCodey97.5060TBGlobalGPT-4
1010RetailSalesBotProductSuggestCheerful91.8042TBUSAGPT-4

Step 2: Sorting the Data using PROC SORT

proc sort data=chatgpt_self out=sorted_ai;

 by descending Confidence_Level;

run;


proc print data=sorted_ai;

 title "AI Modules Sorted by Confidence Level";

run;

Output:

AI Modules Sorted by Confidence Level

ObsAI_IDModule_TypeCapabilityUse_CaseResponse_StyleConfidence_LevelTrained_Data_SizeRegion_UsedOpenAI_Version
11LanguageNLPChatbotFriendly98.5045TBGlobalGPT-4
24ReasoningMathGeniusProblemSolvingPrecise97.8048TBGlobalGPT-4
39CodingCodeHelperDebuggingTechnicalCodey97.5060TBGlobalGPT-4
412FinancialFinAdvisorInvestmentGuideFormal96.6051TBUSAGPT-4
56MultilingualTranslatorRealTimeTranslatePolite96.3055TBAsiaGPT-4
630MilitaryDefenseBotThreatAssessmentCommanding96.2070TBGlobalGPT-4o
78LegalLegalAdvisorContractReviewStructured95.9047TBEuropeGPT-4
82LanguageTextSummaryArticleSummarizationFormal95.2050TBGlobalGPT-4
923QuantumQAlgoSolverQuantumProblemPrecise95.0055TBUSAGPT-4
1011ResearchDataMinerLiteratureReviewScholarly94.7043TBGlobalGPT-4
1124RobotsRoboVisionObjectTrackingRobotic94.4063TBGlobalGPT-4o
1216JournalismFactCheckerNewsVerificationSerious94.2053TBUSAGPT-4
137HealthcareMedSupportMedicalAnalysisClear94.1052TBUSAGPT-4
1426AIEthicsAdvisorPolicyFormulationNeutral93.7048TBGlobalGPT-4
155CreativePoetryWriterStoryCreationArtistic93.6040TBUKGPT-3.5
1620SpaceAstroBotSpaceResearchAnalytical93.1046TBNASAGPT-4
1721DisasterDisasterAlertEmergencyWarningUrgent92.8044TBGlobalGPT-4o
183VisionObjectDetectSecuritySystemsConcise92.7065TBUSAGPT-4o
1913EducationTutorPersonalizedLearningCalm92.5049TBAsiaGPT-4
2010RetailSalesBotProductSuggestCheerful91.8042TBUSAGPT-4
2128HRResumeFilterCandidateScreeningBrief91.3045TBEuropeGPT-4
2217SportsCoachBotTrainingSuggestionsEnergetic91.0039TBEuropeGPT-3.5
2318AgricultureAgriAdvisorCropDiagnosisInformative90.4037TBIndiaGPT-4
2425NutritionDietAdvisorMealPlanningGentle90.2040TBAsiaGPT-4
2514EntertainmentScreenwriterDialogueWritingWitty89.9038TBUKGPT-3.5
2629MarketingAdGeneratorCampaignCreationPersuasive89.7046TBUSAGPT-4
2719TravelGuideBotTravelPlansFun89.5041TBGlobalGPT-4
2827GamingGameNarratorVirtualStorytellingEngaging88.8042TBUSAGPT-3.5
2915EmotionalEmpathyBotStressSupportEmpathetic88.3035TBGlobalGPT-3.5
3022ChatCasualTalkCompanionCasualFriendly87.9036TBGlobalGPT-3.5

Step 3: Frequency Distribution using PROC FREQ

proc freq data=chatgpt_self;

 tables Region_Used Module_Type Capability;

 title "Frequency Distribution using PROC FREQ";

run;

Output:

Frequency Distribution using PROC FREQ

The FREQ Procedure

Region_UsedFrequencyPercentCumulative
Frequency
Cumulative
Percent
Asia310.00310.00
Europe310.00620.00
Global1240.001860.00
India13.331963.33
NASA13.332066.67
UK26.672273.33
USA826.6730100.00
Module_TypeFrequencyPercentCumulative
Frequency
Cumulative
Percent
AI13.3313.33
Agriculture13.3326.67
Chat13.33310.00
Coding13.33413.33
Creative13.33516.67
Disaster13.33620.00
Education13.33723.33
Emotional13.33826.67
Entertainment13.33930.00
Financial13.331033.33
Gaming13.331136.67
HR13.331240.00
Healthcare13.331343.33
Journalism13.331446.67
Language26.671653.33
Legal13.331756.67
Marketing13.331860.00
Military13.331963.33
Multilingual13.332066.67
Nutrition13.332170.00
Quantum13.332273.33
Reasoning13.332376.67
Research13.332480.00
Retail13.332583.33
Robots13.332686.67
Space13.332790.00
Sports13.332893.33
Travel13.332996.67
Vision13.3330100.00
CapabilityFrequencyPercentCumulative
Frequency
Cumulative
Percent
AdGenerator13.3313.33
AgriAdvisor13.3326.67
AstroBot13.33310.00
CasualTalk13.33413.33
CoachBot13.33516.67
CodeHelper13.33620.00
DataMiner13.33723.33
DefenseBot13.33826.67
DietAdvisor13.33930.00
DisasterAlert13.331033.33
EmpathyBot13.331136.67
EthicsAdvisor13.331240.00
FactChecker13.331343.33
FinAdvisor13.331446.67
GameNarrator13.331550.00
GuideBot13.331653.33
LegalAdvisor13.331756.67
MathGenius13.331860.00
MedSupport13.331963.33
NLP13.332066.67
ObjectDetect13.332170.00
PoetryWriter13.332273.33
QAlgoSolver13.332376.67
ResumeFilter13.332480.00
RoboVision13.332583.33
SalesBot13.332686.67
Screenwriter13.332790.00
TextSummary13.332893.33
Translator13.332996.67
Tutor13.3330100.00

Step 4: Statistical Summary using PROC MEANS

proc means data=chatgpt_self min max mean std;

 var Confidence_Level;

 title "Statistical Summary Of AI Confidence Level";

run;

Output:

Statistical Summary Of AI Confidence Level

The MEANS Procedure

Analysis Variable : Confidence_Level
MinimumMaximumMeanStd Dev
87.900000098.500000093.12000002.9630367

Step 5: SQL Operations with PROC SQL

Example 1: Highest Confidence by Region

proc sql;

 select Region_Used, max(Confidence_Level) as Max_Co

 from Chatgpt_self

 group by Region_Used;

quit;

Output:

Region_UsedMax_Co
Asia96.3
Europe95.9
Global98.5
India90.4
NASA93.1
UK93.6
USA96.6

Example 2: Count of AI by Capability

proc sql;

  select Capability, Count(*) as Count

  from chatgpt_self

  group by Capability

  order by Count desc;

 quit;

 Output:

CapabilityCount
ResumeFilter1
NLP1
EthicsAdvisor1
TextSummary1
MathGenius1
DisasterAlert1
PoetryWriter1
CodeHelper1
SalesBot1
FinAdvisor1
Tutor1
LegalAdvisor1
DietAdvisor1
MedSupport1
CoachBot1
ObjectDetect1
EmpathyBot1
QAlgoSolver1
AstroBot1
RoboVision1
FactChecker1
Screenwriter1
DataMiner1
Translator1
GameNarrator1
AdGenerator1
AgriAdvisor1
CasualTalk1
DefenseBot1
GuideBot1


Step 6: Using SAS MACROS for Dynamic Analysis

%macro top_ai_by_region(region);

 proc sql;

  title "Top AI Modules in &region by Confidence";

  select Module_Type, Capability, Confidence_Level

  from chatgpt_self

  where Region_Used = "&region"

  order by Confidence_Level desc;

 quit;

%mend;


%top_ai_by_region(Global);

Output:

Top AI Modules in Global by Confidence

Module_TypeCapabilityConfidence_Level
LanguageNLP98.50
ReasoningMathGenius97.80
CodingCodeHelper97.50
MilitaryDefenseBot96.20
LanguageTextSummary95.20
ResearchDataMiner94.70
RobotsRoboVision94.40
AIEthicsAdvisor93.70
DisasterDisasterAlert92.80
TravelGuideBot89.50
EmotionalEmpathyBot88.30
ChatCasualTalk87.90

%top_ai_by_region(USA);

Output:

Top  AI Modules in USA by Confidence

Module_TypeCapabilityConfidence_Level
FinancialFinAdvisor96.60
QuantumQAlgoSolver95.00
JournalismFactChecker94.20
HealthcareMedSupport94.10
VisionObjectDetect92.70
RetailSalesBot91.80
MarketingAdGenerator89.70
GamingGameNarrator88.80

%top_ai_by_region(Asia);

Output:

Top AI Modules in Asia by Confidence

Module_TypeCapabilityConfidence_Level
MultilingualTranslator96.30
EducationTutor92.50
NutritionDietAdvisor90.20

Step 7: Categorize Confidence Level using IF-ELSE 

data catagorized_ai;

 set chatgpt_self;

 length  Confidence_Category $15;

 if Confidence_Level >= 96 then Confidence_Category = "High";

 else if Confidence_Level >= 92 then Confidence_Category = "Medium";

 else Confidence_Category = "Low";

run;

proc priont;run;

Output:

ObsAI_IDModule_TypeCapabilityUse_CaseResponse_StyleConfidence_LevelTrained_Data_SizeRegion_UsedOpenAI_VersionConfidence_Category
11LanguageNLPChatbotFriendly98.5045TBGlobalGPT-4High
22LanguageTextSummaryArticleSummarizationFormal95.2050TBGlobalGPT-4Medium
33VisionObjectDetectSecuritySystemsConcise92.7065TBUSAGPT-4oMedium
44ReasoningMathGeniusProblemSolvingPrecise97.8048TBGlobalGPT-4High
55CreativePoetryWriterStoryCreationArtistic93.6040TBUKGPT-3.5Medium
66MultilingualTranslatorRealTimeTranslatePolite96.3055TBAsiaGPT-4High
77HealthcareMedSupportMedicalAnalysisClear94.1052TBUSAGPT-4Medium
88LegalLegalAdvisorContractReviewStructured95.9047TBEuropeGPT-4Medium
99CodingCodeHelperDebuggingTechnicalCodey97.5060TBGlobalGPT-4High
1010RetailSalesBotProductSuggestCheerful91.8042TBUSAGPT-4Low
1111ResearchDataMinerLiteratureReviewScholarly94.7043TBGlobalGPT-4Medium
1212FinancialFinAdvisorInvestmentGuideFormal96.6051TBUSAGPT-4High
1313EducationTutorPersonalizedLearningCalm92.5049TBAsiaGPT-4Medium
1414EntertainmentScreenwriterDialogueWritingWitty89.9038TBUKGPT-3.5Low
1515EmotionalEmpathyBotStressSupportEmpathetic88.3035TBGlobalGPT-3.5Low
1616JournalismFactCheckerNewsVerificationSerious94.2053TBUSAGPT-4Medium
1717SportsCoachBotTrainingSuggestionsEnergetic91.0039TBEuropeGPT-3.5Low
1818AgricultureAgriAdvisorCropDiagnosisInformative90.4037TBIndiaGPT-4Low
1919TravelGuideBotTravelPlansFun89.5041TBGlobalGPT-4Low
2020SpaceAstroBotSpaceResearchAnalytical93.1046TBNASAGPT-4Medium
2121DisasterDisasterAlertEmergencyWarningUrgent92.8044TBGlobalGPT-4oMedium
2222ChatCasualTalkCompanionCasualFriendly87.9036TBGlobalGPT-3.5Low
2323QuantumQAlgoSolverQuantumProblemPrecise95.0055TBUSAGPT-4Medium
2424RobotsRoboVisionObjectTrackingRobotic94.4063TBGlobalGPT-4oMedium
2525NutritionDietAdvisorMealPlanningGentle90.2040TBAsiaGPT-4Low
2626AIEthicsAdvisorPolicyFormulationNeutral93.7048TBGlobalGPT-4Medium
2727GamingGameNarratorVirtualStorytellingEngaging88.8042TBUSAGPT-3.5Low
2828HRResumeFilterCandidateScreeningBrief91.3045TBEuropeGPT-4Low
2929MarketingAdGeneratorCampaignCreationPersuasive89.7046TBUSAGPT-4Low
3030MilitaryDefenseBotThreatAssessmentCommanding96.2070TBGlobalGPT-4oHigh


proc freq data=catagorized_ai;

 tables Confidence_Category;

 title "AI Confidence Category Distribution";

run;

Output:

AI Confidence Category Distribution

The FREQ Procedure

Confidence_CategoryFrequencyPercentCumulative
Frequency
Cumulative
Percent
High620.00620.00
Low1136.671756.67
Medium1343.3330100.00

Step 8: Loop Through Capabilities with Macros

proc sql noprint;

 select distinct Capability into :capList separated by "|"

 from chatgpt_self;

quit;


%let capCount =%sysfunc(countw(&capList, |));


%macro capability_counts;

 %do i = 1 %to &capCount;

   %let currentCap = %scan(&capList, &i, |);

   

   proc sql;

    title "Count of Capability: &currentCap";

    select count(*) as Total_AIs

    from chatgpt_self

    where Capability = "&currentCap";

   quit;

  %end;

%mend;

 

%capability_counts

Output:

Count of Capability: AdGenerator

Total_AIs
1

Count of Capability: AgriAdvisor

Total_AIs
1

Count of Capability: AstroBot

Total_AIs
1

Count of Capability: CasualTalk

Total_AIs
1

Count of Capability: CoachBot

Total_AIs
1

Count of Capability: CodeHelper

Total_AIs
1

Count of Capability: DataMiner

Total_AIs
1

Count of Capability: DefenseBot

Total_AIs
1

Count of Capability: DietAdvisor

Total_AIs
1

Count of Capability: DisasterAlert

Total_AIs
1

Count of Capability: EmpathyBot

Total_AIs
1

Count of Capability: EthicsAdvisor

Total_AIs
1

Count of Capability: FactChecker

Total_AIs
1

Count of Capability: FinAdvisor

Total_AIs
1

Count of Capability: GameNarrator

Total_AIs
1

Count of Capability: GuideBot

Total_AIs
1

Count of Capability: LegalAdvisor

Total_AIs
1

Count of Capability: MathGenius

Total_AIs
1

Count of Capability: MedSupport

Total_AIs
1

Count of Capability: NLP

Total_AIs
1

Count of Capability: ObjectDetect

Total_AIs
1

Count of Capability: PoetryWriter

Total_AIs
1

Count of Capability: QAlgoSolver

Total_AIs
1

Count of Capability: ResumeFilter

Total_AIs
1

Count of Capability: RoboVision

Total_AIs
1

Count of Capability: SalesBot

Total_AIs
1

Count of Capability: Screenwriter

Total_AIs
1

Count of Capability: TextSummary

Total_AIs
1

Count of Capability: Translator

Total_AIs
1

Count of Capability: Tutor

Total_AIs
1

Step 9: Advanced Grouping – AI Count by Training Size Category

data size_grouped;

    set chatgpt_self;

    length Size_Category $10;

    if input(compress(Trained_Data_Size,,'kd'), 8.) < 45 then Size_Category = "Small";

    else if input(compress(Trained_Data_Size,,'kd'), 8.) <= 55 then Size_Category = "Medium";

    else Size_Category = "Large";

run;

proc print;run;

 Output:

ObsAI_IDModule_TypeCapabilityUse_CaseResponse_StyleConfidence_LevelTrained_Data_SizeRegion_UsedOpenAI_VersionSize_Category
11LanguageNLPChatbotFriendly98.5045TBGlobalGPT-4Medium
22LanguageTextSummaryArticleSummarizationFormal95.2050TBGlobalGPT-4Medium
33VisionObjectDetectSecuritySystemsConcise92.7065TBUSAGPT-4oLarge
44ReasoningMathGeniusProblemSolvingPrecise97.8048TBGlobalGPT-4Medium
55CreativePoetryWriterStoryCreationArtistic93.6040TBUKGPT-3.5Small
66MultilingualTranslatorRealTimeTranslatePolite96.3055TBAsiaGPT-4Medium
77HealthcareMedSupportMedicalAnalysisClear94.1052TBUSAGPT-4Medium
88LegalLegalAdvisorContractReviewStructured95.9047TBEuropeGPT-4Medium
99CodingCodeHelperDebuggingTechnicalCodey97.5060TBGlobalGPT-4Large
1010RetailSalesBotProductSuggestCheerful91.8042TBUSAGPT-4Small
1111ResearchDataMinerLiteratureReviewScholarly94.7043TBGlobalGPT-4Small
1212FinancialFinAdvisorInvestmentGuideFormal96.6051TBUSAGPT-4Medium
1313EducationTutorPersonalizedLearningCalm92.5049TBAsiaGPT-4Medium
1414EntertainmentScreenwriterDialogueWritingWitty89.9038TBUKGPT-3.5Small
1515EmotionalEmpathyBotStressSupportEmpathetic88.3035TBGlobalGPT-3.5Small
1616JournalismFactCheckerNewsVerificationSerious94.2053TBUSAGPT-4Medium
1717SportsCoachBotTrainingSuggestionsEnergetic91.0039TBEuropeGPT-3.5Small
1818AgricultureAgriAdvisorCropDiagnosisInformative90.4037TBIndiaGPT-4Small
1919TravelGuideBotTravelPlansFun89.5041TBGlobalGPT-4Small
2020SpaceAstroBotSpaceResearchAnalytical93.1046TBNASAGPT-4Medium
2121DisasterDisasterAlertEmergencyWarningUrgent92.8044TBGlobalGPT-4oSmall
2222ChatCasualTalkCompanionCasualFriendly87.9036TBGlobalGPT-3.5Small
2323QuantumQAlgoSolverQuantumProblemPrecise95.0055TBUSAGPT-4Medium
2424RobotsRoboVisionObjectTrackingRobotic94.4063TBGlobalGPT-4oLarge
2525NutritionDietAdvisorMealPlanningGentle90.2040TBAsiaGPT-4Small
2626AIEthicsAdvisorPolicyFormulationNeutral93.7048TBGlobalGPT-4Medium
2727GamingGameNarratorVirtualStorytellingEngaging88.8042TBUSAGPT-3.5Small
2828HRResumeFilterCandidateScreeningBrief91.3045TBEuropeGPT-4Medium
2929MarketingAdGeneratorCampaignCreationPersuasive89.7046TBUSAGPT-4Medium
3030MilitaryDefenseBotThreatAssessmentCommanding96.2070TBGlobalGPT-4oLarge

proc freq data=size_grouped;

  tables Size_Category;

  title "AI Modules by Training Data Size Category";

run;

Output:

AI Modules by Training Data Size Category

The FREQ Procedure

Size_CategoryFrequencyPercentCumulative
Frequency
Cumulative
Percent
Large413.33413.33
Medium1446.671860.00
Small1240.0030100.00

Step 10: Cross-tab

proc freq data=catagorized_ai;

 tables Module_Type*Confidence_Category / nopercent norow nocol;

 title "Module vs Confidence Category Matrix";

run;

Output:

Module vs Confidence Category Matrix

The FREQ Procedure

Frequency
Table of Module_Type by Confidence_Category
Module_TypeConfidence_Category
HighLowMediumTotal
AI
0
0
1
1
Agriculture
0
1
0
1
Chat
0
1
0
1
Coding
1
0
0
1
Creative
0
0
1
1
Disaster
0
0
1
1
Education
0
0
1
1
Emotional
0
1
0
1
Entertainment
0
1
0
1
Financial
1
0
0
1
Gaming
0
1
0
1
HR
0
1
0
1
Healthcare
0
0
1
1
Journalism
0
0
1
1
Language
1
0
1
2
Legal
0
0
1
1
Marketing
0
1
0
1
Military
1
0
0
1
Multilingual
1
0
0
1
Nutrition
0
1
0
1
Quantum
0
0
1
1
Reasoning
1
0
0
1
Research
0
0
1
1
Retail
0
1
0
1
Robots
0
0
1
1
Space
0
0
1
1
Sports
0
1
0
1
Travel
0
1
0
1
Vision
0
0
1
1
Total
6
11
13
30
To Visit My Previous E-Commerce Dataset:Click Here
To Visit My Previous Length,Input,Retain Statements:Click Here
To Visit My Previous Urban Traffic Dataset:Click Here
To Visit My Previous Home Energy Consumption Dataset:Click Here





--->PLEASE FOLLOW OUR BLOG FOR MORE INFORMATION.
--->PLEASE DO COMMENTS AND SHARE OUR BLOG.

PLEASE FOLLOW OUR TELEGRAM CHANNEL CLICK HERE

PLEASE FOLLOW OUR FACEBOOK PAGE  CLICK HERE

PLEASE FOLLOW OUR INSTAGRAM PAGE CLICK HERE





No comments:

Post a Comment