SELF-DESCRIPTION ANALYSIS OF AI MODULES USING PROC PRINT | PROC SORT | PROC FREQ | PROC MEANS | PROC SQL | MACROS IN SAS
/*Creating a dataset of different types of AI personalities or capabilities*/
Dataset Creation:
options nocenter;
data chatgpt_self;
length
AI_ID 8
Module_Type $20
Capability $25
Use_Case $30
Response_Style $20
Confidence_Level 8
Trained_Data_Size $15
Region_Used $15
OpenAI_Version $10;
format Confidence_Level 8.2;
input
AI_ID
Module_Type $
Capability $
Use_Case $
Response_Style $
Confidence_Level
Trained_Data_Size $
Region_Used $
OpenAI_Version $;
datalines;
1 Language NLP Chatbot Friendly 98.5 45TB Global GPT-4
2 Language TextSummary ArticleSummarization Formal 95.2 50TB Global GPT-4
3 Vision ObjectDetect SecuritySystems Concise 92.7 65TB USA GPT-4o
4 Reasoning MathGenius ProblemSolving Precise 97.8 48TB Global GPT-4
5 Creative PoetryWriter StoryCreation Artistic 93.6 40TB UK GPT-3.5
6 Multilingual Translator RealTimeTranslate Polite 96.3 55TB Asia GPT-4
7 Healthcare MedSupport MedicalAnalysis Clear 94.1 52TB USA GPT-4
8 Legal LegalAdvisor ContractReview Structured 95.9 47TB Europe GPT-4
9 Coding CodeHelper DebuggingTechnical Codey 97.5 60TB Global GPT-4
10 Retail SalesBot ProductSuggest Cheerful 91.8 42TB USA GPT-4
11 Research DataMiner LiteratureReview Scholarly 94.7 43TB Global GPT-4
12 Financial FinAdvisor InvestmentGuide Formal 96.6 51TB USA GPT-4
13 Education Tutor PersonalizedLearning Calm 92.5 49TB Asia GPT-4
14 Entertainment Screenwriter DialogueWriting Witty 89.9 38TB UK GPT-3.5
15 Emotional EmpathyBot StressSupport Empathetic 88.3 35TB Global GPT-3.5
16 Journalism FactChecker NewsVerification Serious 94.2 53TB USA GPT-4
17 Sports CoachBot TrainingSuggestions Energetic 91.0 39TB Europe GPT-3.5
18 Agriculture AgriAdvisor CropDiagnosis Informative 90.4 37TB India GPT-4
19 Travel GuideBot TravelPlans Fun 89.5 41TB Global GPT-4
20 Space AstroBot SpaceResearch Analytical 93.1 46TB NASA GPT-4
21 Disaster DisasterAlert EmergencyWarning Urgent 92.8 44TB Global GPT-4o
22 Chat CasualTalk CompanionCasual Friendly 87.9 36TB Global GPT-3.5
23 Quantum QAlgoSolver QuantumProblem Precise 95.0 55TB USA GPT-4
24 Robots RoboVision ObjectTracking Robotic 94.4 63TB Global GPT-4o
25 Nutrition DietAdvisor MealPlanning Gentle 90.2 40TB Asia GPT-4
26 AI EthicsAdvisor PolicyFormulation Neutral 93.7 48TB Global GPT-4
27 Gaming GameNarrator VirtualStorytelling Engaging 88.8 42TB USA GPT-3.5
28 HR ResumeFilter CandidateScreening Brief 91.3 45TB Europe GPT-4
29 Marketing AdGenerator CampaignCreation Persuasive 89.7 46TB USA GPT-4
30 Military DefenseBot ThreatAssessment Commanding 96.2 70TB Global GPT-4o
;
run;
proc print;run;
Output:
| Obs | AI_ID | Module_Type | Capability | Use_Case | Response_Style | Confidence_Level | Trained_Data_Size | Region_Used | OpenAI_Version |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | Language | NLP | Chatbot | Friendly | 98.50 | 45TB | Global | GPT-4 |
| 2 | 2 | Language | TextSummary | ArticleSummarization | Formal | 95.20 | 50TB | Global | GPT-4 |
| 3 | 3 | Vision | ObjectDetect | SecuritySystems | Concise | 92.70 | 65TB | USA | GPT-4o |
| 4 | 4 | Reasoning | MathGenius | ProblemSolving | Precise | 97.80 | 48TB | Global | GPT-4 |
| 5 | 5 | Creative | PoetryWriter | StoryCreation | Artistic | 93.60 | 40TB | UK | GPT-3.5 |
| 6 | 6 | Multilingual | Translator | RealTimeTranslate | Polite | 96.30 | 55TB | Asia | GPT-4 |
| 7 | 7 | Healthcare | MedSupport | MedicalAnalysis | Clear | 94.10 | 52TB | USA | GPT-4 |
| 8 | 8 | Legal | LegalAdvisor | ContractReview | Structured | 95.90 | 47TB | Europe | GPT-4 |
| 9 | 9 | Coding | CodeHelper | DebuggingTechnical | Codey | 97.50 | 60TB | Global | GPT-4 |
| 10 | 10 | Retail | SalesBot | ProductSuggest | Cheerful | 91.80 | 42TB | USA | GPT-4 |
| 11 | 11 | Research | DataMiner | LiteratureReview | Scholarly | 94.70 | 43TB | Global | GPT-4 |
| 12 | 12 | Financial | FinAdvisor | InvestmentGuide | Formal | 96.60 | 51TB | USA | GPT-4 |
| 13 | 13 | Education | Tutor | PersonalizedLearning | Calm | 92.50 | 49TB | Asia | GPT-4 |
| 14 | 14 | Entertainment | Screenwriter | DialogueWriting | Witty | 89.90 | 38TB | UK | GPT-3.5 |
| 15 | 15 | Emotional | EmpathyBot | StressSupport | Empathetic | 88.30 | 35TB | Global | GPT-3.5 |
| 16 | 16 | Journalism | FactChecker | NewsVerification | Serious | 94.20 | 53TB | USA | GPT-4 |
| 17 | 17 | Sports | CoachBot | TrainingSuggestions | Energetic | 91.00 | 39TB | Europe | GPT-3.5 |
| 18 | 18 | Agriculture | AgriAdvisor | CropDiagnosis | Informative | 90.40 | 37TB | India | GPT-4 |
| 19 | 19 | Travel | GuideBot | TravelPlans | Fun | 89.50 | 41TB | Global | GPT-4 |
| 20 | 20 | Space | AstroBot | SpaceResearch | Analytical | 93.10 | 46TB | NASA | GPT-4 |
| 21 | 21 | Disaster | DisasterAlert | EmergencyWarning | Urgent | 92.80 | 44TB | Global | GPT-4o |
| 22 | 22 | Chat | CasualTalk | CompanionCasual | Friendly | 87.90 | 36TB | Global | GPT-3.5 |
| 23 | 23 | Quantum | QAlgoSolver | QuantumProblem | Precise | 95.00 | 55TB | USA | GPT-4 |
| 24 | 24 | Robots | RoboVision | ObjectTracking | Robotic | 94.40 | 63TB | Global | GPT-4o |
| 25 | 25 | Nutrition | DietAdvisor | MealPlanning | Gentle | 90.20 | 40TB | Asia | GPT-4 |
| 26 | 26 | AI | EthicsAdvisor | PolicyFormulation | Neutral | 93.70 | 48TB | Global | GPT-4 |
| 27 | 27 | Gaming | GameNarrator | VirtualStorytelling | Engaging | 88.80 | 42TB | USA | GPT-3.5 |
| 28 | 28 | HR | ResumeFilter | CandidateScreening | Brief | 91.30 | 45TB | Europe | GPT-4 |
| 29 | 29 | Marketing | AdGenerator | CampaignCreation | Persuasive | 89.70 | 46TB | USA | GPT-4 |
| 30 | 30 | Military | DefenseBot | ThreatAssessment | Commanding | 96.20 | 70TB | Global | GPT-4o |
Step 1: Data Exploration using PROC PRINT
proc print data=chatgpt_self(obs=10);
title "First 10 Records Of ChatGPT Self-Description Dataset";
run;
Output:
| Obs | AI_ID | Module_Type | Capability | Use_Case | Response_Style | Confidence_Level | Trained_Data_Size | Region_Used | OpenAI_Version |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | Language | NLP | Chatbot | Friendly | 98.50 | 45TB | Global | GPT-4 |
| 2 | 2 | Language | TextSummary | ArticleSummarization | Formal | 95.20 | 50TB | Global | GPT-4 |
| 3 | 3 | Vision | ObjectDetect | SecuritySystems | Concise | 92.70 | 65TB | USA | GPT-4o |
| 4 | 4 | Reasoning | MathGenius | ProblemSolving | Precise | 97.80 | 48TB | Global | GPT-4 |
| 5 | 5 | Creative | PoetryWriter | StoryCreation | Artistic | 93.60 | 40TB | UK | GPT-3.5 |
| 6 | 6 | Multilingual | Translator | RealTimeTranslate | Polite | 96.30 | 55TB | Asia | GPT-4 |
| 7 | 7 | Healthcare | MedSupport | MedicalAnalysis | Clear | 94.10 | 52TB | USA | GPT-4 |
| 8 | 8 | Legal | LegalAdvisor | ContractReview | Structured | 95.90 | 47TB | Europe | GPT-4 |
| 9 | 9 | Coding | CodeHelper | DebuggingTechnical | Codey | 97.50 | 60TB | Global | GPT-4 |
| 10 | 10 | Retail | SalesBot | ProductSuggest | Cheerful | 91.80 | 42TB | USA | GPT-4 |
Step 2: Sorting the Data using PROC SORT
proc sort data=chatgpt_self out=sorted_ai;
by descending Confidence_Level;
run;
proc print data=sorted_ai;
title "AI Modules Sorted by Confidence Level";
run;
Output:
| Obs | AI_ID | Module_Type | Capability | Use_Case | Response_Style | Confidence_Level | Trained_Data_Size | Region_Used | OpenAI_Version |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | Language | NLP | Chatbot | Friendly | 98.50 | 45TB | Global | GPT-4 |
| 2 | 4 | Reasoning | MathGenius | ProblemSolving | Precise | 97.80 | 48TB | Global | GPT-4 |
| 3 | 9 | Coding | CodeHelper | DebuggingTechnical | Codey | 97.50 | 60TB | Global | GPT-4 |
| 4 | 12 | Financial | FinAdvisor | InvestmentGuide | Formal | 96.60 | 51TB | USA | GPT-4 |
| 5 | 6 | Multilingual | Translator | RealTimeTranslate | Polite | 96.30 | 55TB | Asia | GPT-4 |
| 6 | 30 | Military | DefenseBot | ThreatAssessment | Commanding | 96.20 | 70TB | Global | GPT-4o |
| 7 | 8 | Legal | LegalAdvisor | ContractReview | Structured | 95.90 | 47TB | Europe | GPT-4 |
| 8 | 2 | Language | TextSummary | ArticleSummarization | Formal | 95.20 | 50TB | Global | GPT-4 |
| 9 | 23 | Quantum | QAlgoSolver | QuantumProblem | Precise | 95.00 | 55TB | USA | GPT-4 |
| 10 | 11 | Research | DataMiner | LiteratureReview | Scholarly | 94.70 | 43TB | Global | GPT-4 |
| 11 | 24 | Robots | RoboVision | ObjectTracking | Robotic | 94.40 | 63TB | Global | GPT-4o |
| 12 | 16 | Journalism | FactChecker | NewsVerification | Serious | 94.20 | 53TB | USA | GPT-4 |
| 13 | 7 | Healthcare | MedSupport | MedicalAnalysis | Clear | 94.10 | 52TB | USA | GPT-4 |
| 14 | 26 | AI | EthicsAdvisor | PolicyFormulation | Neutral | 93.70 | 48TB | Global | GPT-4 |
| 15 | 5 | Creative | PoetryWriter | StoryCreation | Artistic | 93.60 | 40TB | UK | GPT-3.5 |
| 16 | 20 | Space | AstroBot | SpaceResearch | Analytical | 93.10 | 46TB | NASA | GPT-4 |
| 17 | 21 | Disaster | DisasterAlert | EmergencyWarning | Urgent | 92.80 | 44TB | Global | GPT-4o |
| 18 | 3 | Vision | ObjectDetect | SecuritySystems | Concise | 92.70 | 65TB | USA | GPT-4o |
| 19 | 13 | Education | Tutor | PersonalizedLearning | Calm | 92.50 | 49TB | Asia | GPT-4 |
| 20 | 10 | Retail | SalesBot | ProductSuggest | Cheerful | 91.80 | 42TB | USA | GPT-4 |
| 21 | 28 | HR | ResumeFilter | CandidateScreening | Brief | 91.30 | 45TB | Europe | GPT-4 |
| 22 | 17 | Sports | CoachBot | TrainingSuggestions | Energetic | 91.00 | 39TB | Europe | GPT-3.5 |
| 23 | 18 | Agriculture | AgriAdvisor | CropDiagnosis | Informative | 90.40 | 37TB | India | GPT-4 |
| 24 | 25 | Nutrition | DietAdvisor | MealPlanning | Gentle | 90.20 | 40TB | Asia | GPT-4 |
| 25 | 14 | Entertainment | Screenwriter | DialogueWriting | Witty | 89.90 | 38TB | UK | GPT-3.5 |
| 26 | 29 | Marketing | AdGenerator | CampaignCreation | Persuasive | 89.70 | 46TB | USA | GPT-4 |
| 27 | 19 | Travel | GuideBot | TravelPlans | Fun | 89.50 | 41TB | Global | GPT-4 |
| 28 | 27 | Gaming | GameNarrator | VirtualStorytelling | Engaging | 88.80 | 42TB | USA | GPT-3.5 |
| 29 | 15 | Emotional | EmpathyBot | StressSupport | Empathetic | 88.30 | 35TB | Global | GPT-3.5 |
| 30 | 22 | Chat | CasualTalk | CompanionCasual | Friendly | 87.90 | 36TB | Global | GPT-3.5 |
Step 3: Frequency Distribution using PROC FREQ
proc freq data=chatgpt_self;
tables Region_Used Module_Type Capability;
title "Frequency Distribution using PROC FREQ";
run;
Output:
The FREQ Procedure
| Region_Used | Frequency | Percent | Cumulative Frequency | Cumulative Percent |
|---|---|---|---|---|
| Asia | 3 | 10.00 | 3 | 10.00 |
| Europe | 3 | 10.00 | 6 | 20.00 |
| Global | 12 | 40.00 | 18 | 60.00 |
| India | 1 | 3.33 | 19 | 63.33 |
| NASA | 1 | 3.33 | 20 | 66.67 |
| UK | 2 | 6.67 | 22 | 73.33 |
| USA | 8 | 26.67 | 30 | 100.00 |
| Module_Type | Frequency | Percent | Cumulative Frequency | Cumulative Percent |
|---|---|---|---|---|
| AI | 1 | 3.33 | 1 | 3.33 |
| Agriculture | 1 | 3.33 | 2 | 6.67 |
| Chat | 1 | 3.33 | 3 | 10.00 |
| Coding | 1 | 3.33 | 4 | 13.33 |
| Creative | 1 | 3.33 | 5 | 16.67 |
| Disaster | 1 | 3.33 | 6 | 20.00 |
| Education | 1 | 3.33 | 7 | 23.33 |
| Emotional | 1 | 3.33 | 8 | 26.67 |
| Entertainment | 1 | 3.33 | 9 | 30.00 |
| Financial | 1 | 3.33 | 10 | 33.33 |
| Gaming | 1 | 3.33 | 11 | 36.67 |
| HR | 1 | 3.33 | 12 | 40.00 |
| Healthcare | 1 | 3.33 | 13 | 43.33 |
| Journalism | 1 | 3.33 | 14 | 46.67 |
| Language | 2 | 6.67 | 16 | 53.33 |
| Legal | 1 | 3.33 | 17 | 56.67 |
| Marketing | 1 | 3.33 | 18 | 60.00 |
| Military | 1 | 3.33 | 19 | 63.33 |
| Multilingual | 1 | 3.33 | 20 | 66.67 |
| Nutrition | 1 | 3.33 | 21 | 70.00 |
| Quantum | 1 | 3.33 | 22 | 73.33 |
| Reasoning | 1 | 3.33 | 23 | 76.67 |
| Research | 1 | 3.33 | 24 | 80.00 |
| Retail | 1 | 3.33 | 25 | 83.33 |
| Robots | 1 | 3.33 | 26 | 86.67 |
| Space | 1 | 3.33 | 27 | 90.00 |
| Sports | 1 | 3.33 | 28 | 93.33 |
| Travel | 1 | 3.33 | 29 | 96.67 |
| Vision | 1 | 3.33 | 30 | 100.00 |
| Capability | Frequency | Percent | Cumulative Frequency | Cumulative Percent |
|---|---|---|---|---|
| AdGenerator | 1 | 3.33 | 1 | 3.33 |
| AgriAdvisor | 1 | 3.33 | 2 | 6.67 |
| AstroBot | 1 | 3.33 | 3 | 10.00 |
| CasualTalk | 1 | 3.33 | 4 | 13.33 |
| CoachBot | 1 | 3.33 | 5 | 16.67 |
| CodeHelper | 1 | 3.33 | 6 | 20.00 |
| DataMiner | 1 | 3.33 | 7 | 23.33 |
| DefenseBot | 1 | 3.33 | 8 | 26.67 |
| DietAdvisor | 1 | 3.33 | 9 | 30.00 |
| DisasterAlert | 1 | 3.33 | 10 | 33.33 |
| EmpathyBot | 1 | 3.33 | 11 | 36.67 |
| EthicsAdvisor | 1 | 3.33 | 12 | 40.00 |
| FactChecker | 1 | 3.33 | 13 | 43.33 |
| FinAdvisor | 1 | 3.33 | 14 | 46.67 |
| GameNarrator | 1 | 3.33 | 15 | 50.00 |
| GuideBot | 1 | 3.33 | 16 | 53.33 |
| LegalAdvisor | 1 | 3.33 | 17 | 56.67 |
| MathGenius | 1 | 3.33 | 18 | 60.00 |
| MedSupport | 1 | 3.33 | 19 | 63.33 |
| NLP | 1 | 3.33 | 20 | 66.67 |
| ObjectDetect | 1 | 3.33 | 21 | 70.00 |
| PoetryWriter | 1 | 3.33 | 22 | 73.33 |
| QAlgoSolver | 1 | 3.33 | 23 | 76.67 |
| ResumeFilter | 1 | 3.33 | 24 | 80.00 |
| RoboVision | 1 | 3.33 | 25 | 83.33 |
| SalesBot | 1 | 3.33 | 26 | 86.67 |
| Screenwriter | 1 | 3.33 | 27 | 90.00 |
| TextSummary | 1 | 3.33 | 28 | 93.33 |
| Translator | 1 | 3.33 | 29 | 96.67 |
| Tutor | 1 | 3.33 | 30 | 100.00 |
Step 4: Statistical Summary using PROC MEANS
proc means data=chatgpt_self min max mean std;
var Confidence_Level;
title "Statistical Summary Of AI Confidence Level";
run;
Output:
The MEANS Procedure
| Analysis Variable : Confidence_Level | |||
|---|---|---|---|
| Minimum | Maximum | Mean | Std Dev |
| 87.9000000 | 98.5000000 | 93.1200000 | 2.9630367 |
Step 5: SQL Operations with PROC SQL
Example 1: Highest Confidence by Region
proc sql;
select Region_Used, max(Confidence_Level) as Max_Co
from Chatgpt_self
group by Region_Used;
quit;
Output:
| Region_Used | Max_Co |
|---|---|
| Asia | 96.3 |
| Europe | 95.9 |
| Global | 98.5 |
| India | 90.4 |
| NASA | 93.1 |
| UK | 93.6 |
| USA | 96.6 |
Example 2: Count of AI by Capability
proc sql;
select Capability, Count(*) as Count
from chatgpt_self
group by Capability
order by Count desc;
quit;
Output:
| Capability | Count |
|---|---|
| ResumeFilter | 1 |
| NLP | 1 |
| EthicsAdvisor | 1 |
| TextSummary | 1 |
| MathGenius | 1 |
| DisasterAlert | 1 |
| PoetryWriter | 1 |
| CodeHelper | 1 |
| SalesBot | 1 |
| FinAdvisor | 1 |
| Tutor | 1 |
| LegalAdvisor | 1 |
| DietAdvisor | 1 |
| MedSupport | 1 |
| CoachBot | 1 |
| ObjectDetect | 1 |
| EmpathyBot | 1 |
| QAlgoSolver | 1 |
| AstroBot | 1 |
| RoboVision | 1 |
| FactChecker | 1 |
| Screenwriter | 1 |
| DataMiner | 1 |
| Translator | 1 |
| GameNarrator | 1 |
| AdGenerator | 1 |
| AgriAdvisor | 1 |
| CasualTalk | 1 |
| DefenseBot | 1 |
| GuideBot | 1 |
Step 6: Using SAS MACROS for Dynamic Analysis
%macro top_ai_by_region(region);
proc sql;
title "Top AI Modules in ®ion by Confidence";
select Module_Type, Capability, Confidence_Level
from chatgpt_self
where Region_Used = "®ion"
order by Confidence_Level desc;
quit;
%mend;
%top_ai_by_region(Global);
Output:
| Module_Type | Capability | Confidence_Level |
|---|---|---|
| Language | NLP | 98.50 |
| Reasoning | MathGenius | 97.80 |
| Coding | CodeHelper | 97.50 |
| Military | DefenseBot | 96.20 |
| Language | TextSummary | 95.20 |
| Research | DataMiner | 94.70 |
| Robots | RoboVision | 94.40 |
| AI | EthicsAdvisor | 93.70 |
| Disaster | DisasterAlert | 92.80 |
| Travel | GuideBot | 89.50 |
| Emotional | EmpathyBot | 88.30 |
| Chat | CasualTalk | 87.90 |
%top_ai_by_region(USA);
Output:
| Module_Type | Capability | Confidence_Level |
|---|---|---|
| Financial | FinAdvisor | 96.60 |
| Quantum | QAlgoSolver | 95.00 |
| Journalism | FactChecker | 94.20 |
| Healthcare | MedSupport | 94.10 |
| Vision | ObjectDetect | 92.70 |
| Retail | SalesBot | 91.80 |
| Marketing | AdGenerator | 89.70 |
| Gaming | GameNarrator | 88.80 |
%top_ai_by_region(Asia);
Output:
| Module_Type | Capability | Confidence_Level |
|---|---|---|
| Multilingual | Translator | 96.30 |
| Education | Tutor | 92.50 |
| Nutrition | DietAdvisor | 90.20 |
Step 7: Categorize Confidence Level using IF-ELSE
data catagorized_ai;
set chatgpt_self;
length Confidence_Category $15;
if Confidence_Level >= 96 then Confidence_Category = "High";
else if Confidence_Level >= 92 then Confidence_Category = "Medium";
else Confidence_Category = "Low";
run;
proc priont;run;
Output:
| Obs | AI_ID | Module_Type | Capability | Use_Case | Response_Style | Confidence_Level | Trained_Data_Size | Region_Used | OpenAI_Version | Confidence_Category |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | Language | NLP | Chatbot | Friendly | 98.50 | 45TB | Global | GPT-4 | High |
| 2 | 2 | Language | TextSummary | ArticleSummarization | Formal | 95.20 | 50TB | Global | GPT-4 | Medium |
| 3 | 3 | Vision | ObjectDetect | SecuritySystems | Concise | 92.70 | 65TB | USA | GPT-4o | Medium |
| 4 | 4 | Reasoning | MathGenius | ProblemSolving | Precise | 97.80 | 48TB | Global | GPT-4 | High |
| 5 | 5 | Creative | PoetryWriter | StoryCreation | Artistic | 93.60 | 40TB | UK | GPT-3.5 | Medium |
| 6 | 6 | Multilingual | Translator | RealTimeTranslate | Polite | 96.30 | 55TB | Asia | GPT-4 | High |
| 7 | 7 | Healthcare | MedSupport | MedicalAnalysis | Clear | 94.10 | 52TB | USA | GPT-4 | Medium |
| 8 | 8 | Legal | LegalAdvisor | ContractReview | Structured | 95.90 | 47TB | Europe | GPT-4 | Medium |
| 9 | 9 | Coding | CodeHelper | DebuggingTechnical | Codey | 97.50 | 60TB | Global | GPT-4 | High |
| 10 | 10 | Retail | SalesBot | ProductSuggest | Cheerful | 91.80 | 42TB | USA | GPT-4 | Low |
| 11 | 11 | Research | DataMiner | LiteratureReview | Scholarly | 94.70 | 43TB | Global | GPT-4 | Medium |
| 12 | 12 | Financial | FinAdvisor | InvestmentGuide | Formal | 96.60 | 51TB | USA | GPT-4 | High |
| 13 | 13 | Education | Tutor | PersonalizedLearning | Calm | 92.50 | 49TB | Asia | GPT-4 | Medium |
| 14 | 14 | Entertainment | Screenwriter | DialogueWriting | Witty | 89.90 | 38TB | UK | GPT-3.5 | Low |
| 15 | 15 | Emotional | EmpathyBot | StressSupport | Empathetic | 88.30 | 35TB | Global | GPT-3.5 | Low |
| 16 | 16 | Journalism | FactChecker | NewsVerification | Serious | 94.20 | 53TB | USA | GPT-4 | Medium |
| 17 | 17 | Sports | CoachBot | TrainingSuggestions | Energetic | 91.00 | 39TB | Europe | GPT-3.5 | Low |
| 18 | 18 | Agriculture | AgriAdvisor | CropDiagnosis | Informative | 90.40 | 37TB | India | GPT-4 | Low |
| 19 | 19 | Travel | GuideBot | TravelPlans | Fun | 89.50 | 41TB | Global | GPT-4 | Low |
| 20 | 20 | Space | AstroBot | SpaceResearch | Analytical | 93.10 | 46TB | NASA | GPT-4 | Medium |
| 21 | 21 | Disaster | DisasterAlert | EmergencyWarning | Urgent | 92.80 | 44TB | Global | GPT-4o | Medium |
| 22 | 22 | Chat | CasualTalk | CompanionCasual | Friendly | 87.90 | 36TB | Global | GPT-3.5 | Low |
| 23 | 23 | Quantum | QAlgoSolver | QuantumProblem | Precise | 95.00 | 55TB | USA | GPT-4 | Medium |
| 24 | 24 | Robots | RoboVision | ObjectTracking | Robotic | 94.40 | 63TB | Global | GPT-4o | Medium |
| 25 | 25 | Nutrition | DietAdvisor | MealPlanning | Gentle | 90.20 | 40TB | Asia | GPT-4 | Low |
| 26 | 26 | AI | EthicsAdvisor | PolicyFormulation | Neutral | 93.70 | 48TB | Global | GPT-4 | Medium |
| 27 | 27 | Gaming | GameNarrator | VirtualStorytelling | Engaging | 88.80 | 42TB | USA | GPT-3.5 | Low |
| 28 | 28 | HR | ResumeFilter | CandidateScreening | Brief | 91.30 | 45TB | Europe | GPT-4 | Low |
| 29 | 29 | Marketing | AdGenerator | CampaignCreation | Persuasive | 89.70 | 46TB | USA | GPT-4 | Low |
| 30 | 30 | Military | DefenseBot | ThreatAssessment | Commanding | 96.20 | 70TB | Global | GPT-4o | High |
proc freq data=catagorized_ai;
tables Confidence_Category;
title "AI Confidence Category Distribution";
run;
Output:
The FREQ Procedure
| Confidence_Category | Frequency | Percent | Cumulative Frequency | Cumulative Percent |
|---|---|---|---|---|
| High | 6 | 20.00 | 6 | 20.00 |
| Low | 11 | 36.67 | 17 | 56.67 |
| Medium | 13 | 43.33 | 30 | 100.00 |
Step 8: Loop Through Capabilities with Macros
proc sql noprint;
select distinct Capability into :capList separated by "|"
from chatgpt_self;
quit;
%let capCount =%sysfunc(countw(&capList, |));
%macro capability_counts;
%do i = 1 %to &capCount;
%let currentCap = %scan(&capList, &i, |);
proc sql;
title "Count of Capability: ¤tCap";
select count(*) as Total_AIs
from chatgpt_self
where Capability = "¤tCap";
quit;
%end;
%mend;
%capability_counts
Output:
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
| Total_AIs |
|---|
| 1 |
Step 9: Advanced Grouping – AI Count by Training Size Category
data size_grouped;
set chatgpt_self;
length Size_Category $10;
if input(compress(Trained_Data_Size,,'kd'), 8.) < 45 then Size_Category = "Small";
else if input(compress(Trained_Data_Size,,'kd'), 8.) <= 55 then Size_Category = "Medium";
else Size_Category = "Large";
run;
proc print;run;
Output:
| Obs | AI_ID | Module_Type | Capability | Use_Case | Response_Style | Confidence_Level | Trained_Data_Size | Region_Used | OpenAI_Version | Size_Category |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | Language | NLP | Chatbot | Friendly | 98.50 | 45TB | Global | GPT-4 | Medium |
| 2 | 2 | Language | TextSummary | ArticleSummarization | Formal | 95.20 | 50TB | Global | GPT-4 | Medium |
| 3 | 3 | Vision | ObjectDetect | SecuritySystems | Concise | 92.70 | 65TB | USA | GPT-4o | Large |
| 4 | 4 | Reasoning | MathGenius | ProblemSolving | Precise | 97.80 | 48TB | Global | GPT-4 | Medium |
| 5 | 5 | Creative | PoetryWriter | StoryCreation | Artistic | 93.60 | 40TB | UK | GPT-3.5 | Small |
| 6 | 6 | Multilingual | Translator | RealTimeTranslate | Polite | 96.30 | 55TB | Asia | GPT-4 | Medium |
| 7 | 7 | Healthcare | MedSupport | MedicalAnalysis | Clear | 94.10 | 52TB | USA | GPT-4 | Medium |
| 8 | 8 | Legal | LegalAdvisor | ContractReview | Structured | 95.90 | 47TB | Europe | GPT-4 | Medium |
| 9 | 9 | Coding | CodeHelper | DebuggingTechnical | Codey | 97.50 | 60TB | Global | GPT-4 | Large |
| 10 | 10 | Retail | SalesBot | ProductSuggest | Cheerful | 91.80 | 42TB | USA | GPT-4 | Small |
| 11 | 11 | Research | DataMiner | LiteratureReview | Scholarly | 94.70 | 43TB | Global | GPT-4 | Small |
| 12 | 12 | Financial | FinAdvisor | InvestmentGuide | Formal | 96.60 | 51TB | USA | GPT-4 | Medium |
| 13 | 13 | Education | Tutor | PersonalizedLearning | Calm | 92.50 | 49TB | Asia | GPT-4 | Medium |
| 14 | 14 | Entertainment | Screenwriter | DialogueWriting | Witty | 89.90 | 38TB | UK | GPT-3.5 | Small |
| 15 | 15 | Emotional | EmpathyBot | StressSupport | Empathetic | 88.30 | 35TB | Global | GPT-3.5 | Small |
| 16 | 16 | Journalism | FactChecker | NewsVerification | Serious | 94.20 | 53TB | USA | GPT-4 | Medium |
| 17 | 17 | Sports | CoachBot | TrainingSuggestions | Energetic | 91.00 | 39TB | Europe | GPT-3.5 | Small |
| 18 | 18 | Agriculture | AgriAdvisor | CropDiagnosis | Informative | 90.40 | 37TB | India | GPT-4 | Small |
| 19 | 19 | Travel | GuideBot | TravelPlans | Fun | 89.50 | 41TB | Global | GPT-4 | Small |
| 20 | 20 | Space | AstroBot | SpaceResearch | Analytical | 93.10 | 46TB | NASA | GPT-4 | Medium |
| 21 | 21 | Disaster | DisasterAlert | EmergencyWarning | Urgent | 92.80 | 44TB | Global | GPT-4o | Small |
| 22 | 22 | Chat | CasualTalk | CompanionCasual | Friendly | 87.90 | 36TB | Global | GPT-3.5 | Small |
| 23 | 23 | Quantum | QAlgoSolver | QuantumProblem | Precise | 95.00 | 55TB | USA | GPT-4 | Medium |
| 24 | 24 | Robots | RoboVision | ObjectTracking | Robotic | 94.40 | 63TB | Global | GPT-4o | Large |
| 25 | 25 | Nutrition | DietAdvisor | MealPlanning | Gentle | 90.20 | 40TB | Asia | GPT-4 | Small |
| 26 | 26 | AI | EthicsAdvisor | PolicyFormulation | Neutral | 93.70 | 48TB | Global | GPT-4 | Medium |
| 27 | 27 | Gaming | GameNarrator | VirtualStorytelling | Engaging | 88.80 | 42TB | USA | GPT-3.5 | Small |
| 28 | 28 | HR | ResumeFilter | CandidateScreening | Brief | 91.30 | 45TB | Europe | GPT-4 | Medium |
| 29 | 29 | Marketing | AdGenerator | CampaignCreation | Persuasive | 89.70 | 46TB | USA | GPT-4 | Medium |
| 30 | 30 | Military | DefenseBot | ThreatAssessment | Commanding | 96.20 | 70TB | Global | GPT-4o | Large |
proc freq data=size_grouped;
tables Size_Category;
title "AI Modules by Training Data Size Category";
run;
Output:
The FREQ Procedure
| Size_Category | Frequency | Percent | Cumulative Frequency | Cumulative Percent |
|---|---|---|---|---|
| Large | 4 | 13.33 | 4 | 13.33 |
| Medium | 14 | 46.67 | 18 | 60.00 |
| Small | 12 | 40.00 | 30 | 100.00 |
Step 10: Cross-tab
proc freq data=catagorized_ai;
tables Module_Type*Confidence_Category / nopercent norow nocol;
title "Module vs Confidence Category Matrix";
run;
Output:
The FREQ Procedure
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No comments:
Post a Comment