Friday, 28 November 2025

323.SMART CITIES ANALYSIS USING DATA STEP | PROC FORMAT | PROC SQL | PROC RANK | PROC MEANS | PROC FREQ | PROC CORR | PROC SGPLOT | MACROS WITH INTNX & INTCK

SMART CITIES ANALYSIS USING DATA STEP | PROC FORMAT | PROC SQL | PROC RANK | PROC MEANS | PROC FREQ | PROC CORR | PROC SGPLOT | MACROS WITH INTNX & INTCK

options nocenter;

1) CREATE THE MOCK DATASET

data work.smart_cities_raw;

    informat Data_Collected date9. Last_Updated date9.;

    format   Data_Collected date9. Last_Updated date9.;


    input City :$30. Country :$20. Region :$15. Population Smart_Infrastructure_Score

    Energy_Efficiency Internet_Penetration Sustainability_Index Data_Collected :date9.;

    /* Derived variables */

    Last_Updated = intnx('month', Data_Collected, 6, 'same');  /* +6 months */

    Days_Since_Collected = intck('day', Data_Collected, today());


    Energy_Efficiency_Scaled    = round(Energy_Efficiency, 0.1);

    Internet_Penetration_Pct    = round(Internet_Penetration, 0.1);

    Sustainability_Index_Scaled = round(Sustainability_Index, 0.1);


    Composite_Score = round(

                          0.4*Smart_Infrastructure_Score +

                          0.25*Energy_Efficiency_Scaled +

                          0.2*Internet_Penetration_Pct +

                          0.15*Sustainability_Index_Scaled

                           , 0.01);


    Flag_Missing = cmiss(of _numeric_);


    label Days_Since_Collected = "Days between Collection and Today()";

datalines;

Singapore       Singapore   Asia         5638700  95  88.5  98.0  90.5  01JAN2024

Copenhagen      Denmark     Europe        794128  90  85.2  96.0  88.1  15FEB2024

Amsterdam       Netherlands Europe        872757  88  82.0  95.0  87.0  01MAR2024

Tokyo           Japan       Asia        13929286  85  78.3  93.5  86.2  12JAN2024

Seoul           SouthKorea  Asia         9776000  84  76.4  92.0  85.5  20FEB2024

Barcelona       Spain       Europe       1620343  80  74.0  90.2  82.8  05MAR2024

Dubai           UAE         MiddleEast   3331420  79  68.5  88.0  78.5  10JAN2024

NewYork         USA         NorthAmerica 8419000  86  80.2  94.0  84.9  25FEB2024

Helsinki        Finland     Europe        655281  91  87.0  97.0  89.7  18MAR2024

Zurich          Switzerland Europe        434008  92  86.8  96.5  90.3  22JAN2024

Shanghai        China       Asia        26317104  82  70.1  91.0  83.5  02FEB2024

Bangalore       India       Asia         8443675  74  64.5  82.0  75.4  28FEB2024

Melbourne       Australia   Oceania      5078193  83  75.5  92.7  84.0  03MAR2024

Toronto         Canada      NorthAmerica 2731571  87  79.0  95.5  85.7  17FEB2024

Stockholm       Sweden      Europe        975904  89  84.0  96.2  88.6  07JAN2024

Reykjavik       Iceland     Europe        131136  78  81.5  98.0  86.0  11MAR2024

;

run;

proc print data=work.smart_cities_raw;

run;

OUTPUT:

ObsData_CollectedLast_UpdatedCityCountryRegionPopulationSmart_Infrastructure_ScoreEnergy_EfficiencyInternet_PenetrationSustainability_IndexDays_Since_CollectedEnergy_Efficiency_ScaledInternet_Penetration_PctSustainability_Index_ScaledComposite_ScoreFlag_Missing
101JAN202401JUL2024SingaporeSingaporeAsia56387009588.598.090.569888.598.090.593.301
215FEB202415AUG2024CopenhagenDenmarkEurope7941289085.296.088.165385.296.088.189.721
301MAR202401SEP2024AmsterdamNetherlandsEurope8727578882.095.087.063882.095.087.087.751
412JAN202412JUL2024TokyoJapanAsia139292868578.393.586.268778.393.586.285.211
520FEB202420AUG2024SeoulSouthKoreaAsia97760008476.492.085.564876.492.085.583.931
605MAR202405SEP2024BarcelonaSpainEurope16203438074.090.282.863474.090.282.880.961
710JAN202410JUL2024DubaiUAEMiddleEast33314207968.588.078.568968.588.078.578.101
825FEB202425AUG2024NewYorkUSANorthAmerica84190008680.294.084.964380.294.084.985.991
918MAR202418SEP2024HelsinkiFinlandEurope6552819187.097.089.762187.097.089.791.011
1022JAN202422JUL2024ZurichSwitzerlandEurope4340089286.896.590.367786.896.590.391.351
1102FEB202402AUG2024ShanghaiChinaAsia263171048270.191.083.566670.191.083.581.051
1228FEB202428AUG2024BangaloreIndiaAsia84436757464.582.075.464064.582.075.473.441
1303MAR202403SEP2024MelbourneAustraliaOceania50781938375.592.784.063675.592.784.083.221
1417FEB202417AUG2024TorontoCanadaNorthAmerica27315718779.095.585.765179.095.585.786.511
1507JAN202407JUL2024StockholmSwedenEurope9759048984.096.288.669284.096.288.689.131
1611MAR202411SEP2024ReykjavikIcelandEurope1311367881.598.086.062881.598.086.084.081

2) FORMATS + PROC FORMAT

proc format;

    value $regionfmt

        'Asia' = 'Asia'

        'Europe' = 'Europe'

        'NorthAmerica' = 'North America'

        'Oceania' = 'Oceania'

        'MiddleEast' = 'Middle East'

        other = 'Other';

run;

LOG:

NOTE: Format $REGIONFMT has been output.

3) MACRO: CATEGORIZE & RANK

%macro CatRank(indata=work.smart_cities_raw, out=work.smart_cities_ranked, topcut=90, 

               highcut=80, mediumcut=70);

    data &out.;

        set &indata.;

        length Category $10.;

        if Composite_Score >= &topcut. then Category='Top';

        else if Composite_Score >= &highcut. then Category='High';

        else if Composite_Score >= &mediumcut. then Category='Medium';

        else Category='Low';

    run;

    proc print data=&out.;

    run;


    /* Create a rank variable using PROC RANK (descending) */

    proc rank data=&out. out=&out. ties=low descending; 

        var Composite_Score; ranks Rank_Composite;

    run;

    /* Create an overall rank starting from 1 */

    data &out.;

        set &out.;

        Rank_Composite = Rank_Composite + 1; /* make ranks start at 1 */

    run;

    proc print data=&out.;

    run;

    /* PROC SQL summary by Region */

    proc sql;

        create table work.region_summary as

        select Region, count(*) as N_Cities,

               mean(Composite_Score) as Mean_Composite format=8.2,

               min(Composite_Score) as Min_Composite,

               max(Composite_Score) as Max_Composite

        from &out.

        group by Region

        order by Mean_Composite desc;

    quit;

  

    %put NOTE: CatRank macro completed. Output dataset=&out. and work.region_summary created.;

%mend CatRank;


%CatRank();

OUTPUT:

ObsData_CollectedLast_UpdatedCityCountryRegionPopulationSmart_Infrastructure_ScoreEnergy_EfficiencyInternet_PenetrationSustainability_IndexDays_Since_CollectedEnergy_Efficiency_ScaledInternet_Penetration_PctSustainability_Index_ScaledComposite_ScoreFlag_MissingCategory
101JAN202401JUL2024SingaporeSingaporeAsia56387009588.598.090.569888.598.090.593.301Top
215FEB202415AUG2024CopenhagenDenmarkEurope7941289085.296.088.165385.296.088.189.721High
301MAR202401SEP2024AmsterdamNetherlandsEurope8727578882.095.087.063882.095.087.087.751High
412JAN202412JUL2024TokyoJapanAsia139292868578.393.586.268778.393.586.285.211High
520FEB202420AUG2024SeoulSouthKoreaAsia97760008476.492.085.564876.492.085.583.931High
605MAR202405SEP2024BarcelonaSpainEurope16203438074.090.282.863474.090.282.880.961High
710JAN202410JUL2024DubaiUAEMiddleEast33314207968.588.078.568968.588.078.578.101Medium
825FEB202425AUG2024NewYorkUSANorthAmerica84190008680.294.084.964380.294.084.985.991High
918MAR202418SEP2024HelsinkiFinlandEurope6552819187.097.089.762187.097.089.791.011Top
1022JAN202422JUL2024ZurichSwitzerlandEurope4340089286.896.590.367786.896.590.391.351Top
1102FEB202402AUG2024ShanghaiChinaAsia263171048270.191.083.566670.191.083.581.051High
1228FEB202428AUG2024BangaloreIndiaAsia84436757464.582.075.464064.582.075.473.441Medium
1303MAR202403SEP2024MelbourneAustraliaOceania50781938375.592.784.063675.592.784.083.221High
1417FEB202417AUG2024TorontoCanadaNorthAmerica27315718779.095.585.765179.095.585.786.511High
1507JAN202407JUL2024StockholmSwedenEurope9759048984.096.288.669284.096.288.689.131High
1611MAR202411SEP2024ReykjavikIcelandEurope1311367881.598.086.062881.598.086.084.081High
ObsData_CollectedLast_UpdatedCityCountryRegionPopulationSmart_Infrastructure_ScoreEnergy_EfficiencyInternet_PenetrationSustainability_IndexDays_Since_CollectedEnergy_Efficiency_ScaledInternet_Penetration_PctSustainability_Index_ScaledComposite_ScoreFlag_MissingCategoryRank_Composite
101JAN202401JUL2024SingaporeSingaporeAsia56387009588.598.090.569888.598.090.593.301Top2
215FEB202415AUG2024CopenhagenDenmarkEurope7941289085.296.088.165385.296.088.189.721High5
301MAR202401SEP2024AmsterdamNetherlandsEurope8727578882.095.087.063882.095.087.087.751High7
412JAN202412JUL2024TokyoJapanAsia139292868578.393.586.268778.393.586.285.211High10
520FEB202420AUG2024SeoulSouthKoreaAsia97760008476.492.085.564876.492.085.583.931High12
605MAR202405SEP2024BarcelonaSpainEurope16203438074.090.282.863474.090.282.880.961High15
710JAN202410JUL2024DubaiUAEMiddleEast33314207968.588.078.568968.588.078.578.101Medium16
825FEB202425AUG2024NewYorkUSANorthAmerica84190008680.294.084.964380.294.084.985.991High9
918MAR202418SEP2024HelsinkiFinlandEurope6552819187.097.089.762187.097.089.791.011Top4
1022JAN202422JUL2024ZurichSwitzerlandEurope4340089286.896.590.367786.896.590.391.351Top3
1102FEB202402AUG2024ShanghaiChinaAsia263171048270.191.083.566670.191.083.581.051High14
1228FEB202428AUG2024BangaloreIndiaAsia84436757464.582.075.464064.582.075.473.441Medium17
1303MAR202403SEP2024MelbourneAustraliaOceania50781938375.592.784.063675.592.784.083.221High13
1417FEB202417AUG2024TorontoCanadaNorthAmerica27315718779.095.585.765179.095.585.786.511High8
1507JAN202407JUL2024StockholmSwedenEurope9759048984.096.288.669284.096.288.689.131High6
1611MAR202411SEP2024ReykjavikIcelandEurope1311367881.598.086.062881.598.086.084.081High11

proc print data=work.smart_cities_ranked;

 run;

OUTPUT:

ObsData_CollectedLast_UpdatedCityCountryRegionPopulationSmart_Infrastructure_ScoreEnergy_EfficiencyInternet_PenetrationSustainability_IndexDays_Since_CollectedEnergy_Efficiency_ScaledInternet_Penetration_PctSustainability_Index_ScaledComposite_ScoreFlag_MissingCategoryRank_Composite
101JAN202401JUL2024SingaporeSingaporeAsia56387009588.598.090.569888.598.090.593.301Top2
215FEB202415AUG2024CopenhagenDenmarkEurope7941289085.296.088.165385.296.088.189.721High5
301MAR202401SEP2024AmsterdamNetherlandsEurope8727578882.095.087.063882.095.087.087.751High7
412JAN202412JUL2024TokyoJapanAsia139292868578.393.586.268778.393.586.285.211High10
520FEB202420AUG2024SeoulSouthKoreaAsia97760008476.492.085.564876.492.085.583.931High12
605MAR202405SEP2024BarcelonaSpainEurope16203438074.090.282.863474.090.282.880.961High15
710JAN202410JUL2024DubaiUAEMiddleEast33314207968.588.078.568968.588.078.578.101Medium16
825FEB202425AUG2024NewYorkUSANorthAmerica84190008680.294.084.964380.294.084.985.991High9
918MAR202418SEP2024HelsinkiFinlandEurope6552819187.097.089.762187.097.089.791.011Top4
1022JAN202422JUL2024ZurichSwitzerlandEurope4340089286.896.590.367786.896.590.391.351Top3
1102FEB202402AUG2024ShanghaiChinaAsia263171048270.191.083.566670.191.083.581.051High14
1228FEB202428AUG2024BangaloreIndiaAsia84436757464.582.075.464064.582.075.473.441Medium17
1303MAR202403SEP2024MelbourneAustraliaOceania50781938375.592.784.063675.592.784.083.221High13
1417FEB202417AUG2024TorontoCanadaNorthAmerica27315718779.095.585.765179.095.585.786.511High8
1507JAN202407JUL2024StockholmSwedenEurope9759048984.096.288.669284.096.288.689.131High6
1611MAR202411SEP2024ReykjavikIcelandEurope1311367881.598.086.062881.598.086.084.081High11

proc print data=work.region_summary; 

run;

OUTPUT:

ObsRegionN_CitiesMean_CompositeMin_CompositeMax_Composite
1Europe787.7180.9691.35
2NorthAmerica286.2585.9986.51
3Asia583.3973.4493.30
4Oceania183.2283.2283.22
5MiddleEast178.1078.1078.10


4) PROC SQL additional transformations and views

proc sql outobs=10;

    create table work.top10_smart as

    select City, Country, Region, Population, Composite_Score, Rank_Composite

    from work.smart_cities_ranked

    order by Composite_Score desc;

quit;

proc print data=work.top10_smart;

run;

OUTPUT:

ObsCityCountryRegionPopulationComposite_ScoreRank_Composite
1SingaporeSingaporeAsia563870093.302
2ZurichSwitzerlandEurope43400891.353
3HelsinkiFinlandEurope65528191.014
4CopenhagenDenmarkEurope79412889.725
5StockholmSwedenEurope97590489.136
6AmsterdamNetherlandsEurope87275787.757
7TorontoCanadaNorthAmerica273157186.518
8NewYorkUSANorthAmerica841900085.999
9TokyoJapanAsia1392928685.2110
10ReykjavikIcelandEurope13113684.0811


5) DESCRIPTIVE STATS: PROC MEANS and PROC FREQ

proc means data=work.smart_cities_ranked n mean std min max median maxdec=2;

    var Smart_Infrastructure_Score Energy_Efficiency_Scaled Internet_Penetration_Pct 

        Sustainability_Index_Scaled Composite_Score Population;

    output out=work.summary_stats mean= / autoname;

run;

proc print data=work.summary_stats;

run;

OUTPUT:

The MEANS Procedure

VariableNMeanStd DevMinimumMaximumMedian
Smart_Infrastructure_Score
Energy_Efficiency_Scaled
Internet_Penetration_Pct
Sustainability_Index_Scaled
Composite_Score
Population
16
16
16
16
16
16
85.19
78.84
93.48
85.42
85.30
5571781.63
5.68
7.02
4.20
4.08
5.24
6876977.86
74.00
64.50
82.00
75.40
73.44
131136.00
95.00
88.50
98.00
90.50
93.30
26317104.00
85.50
79.60
94.50
85.85
85.60
3031495.50
Obs_TYPE__FREQ_Smart_Infrastructure_Scor_MeanEnergy_Efficiency_Scaled_MeanInternet_Penetration_Pct_MeanSustainability_Index_Scal_MeanComposite_Score_MeanPopulation_Mean
101685.187578.843893.47585.418885.29695571781.63

proc freq data=work.smart_cities_ranked order=freq;

    tables Category Region / nocum nopercent;

run;

OUTPUT:

The FREQ Procedure

CategoryFrequency
High11
Top3
Medium2
RegionFrequency
Europe7
Asia5
NorthAmerica2
MiddleEast1
Oceania1

6) CORRELATION ANALYSIS: PROC CORR

proc corr data=work.smart_cities_ranked nosimple plots=matrix(histogram);

    var Smart_Infrastructure_Score Energy_Efficiency_Scaled Internet_Penetration_Pct 

        Sustainability_Index_Scaled Composite_Score Population;

run;

OUTPUT:

The CORR Procedure

6 Variables:Smart_Infrastructure_Score Energy_Efficiency_Scaled Internet_Penetration_Pct Sustainability_Index_Scaled Composite_Score Population
Pearson Correlation Coefficients, N = 16
Prob > |r| under H0: Rho=0
 Smart_Infrastructure_ScoreEnergy_Efficiency_ScaledInternet_Penetration_PctSustainability_Index_ScaledComposite_ScorePopulation
Smart_Infrastructure_Score
1.00000
 
0.87837
<.0001
0.76706
0.0005
0.89342
<.0001
0.95454
<.0001
-0.25546
0.3396
Energy_Efficiency_Scaled
0.87837
<.0001
1.00000
 
0.92628
<.0001
0.95639
<.0001
0.97544
<.0001
-0.48850
0.0549
Internet_Penetration_Pct
0.76706
0.0005
0.92628
<.0001
1.00000
 
0.93697
<.0001
0.91204
<.0001
-0.36466
0.1649
Sustainability_Index_Scaled
0.89342
<.0001
0.95639
<.0001
0.93697
<.0001
1.00000
 
0.97414
<.0001
-0.28797
0.2794
Composite_Score
0.95454
<.0001
0.97544
<.0001
0.91204
<.0001
0.97414
<.0001
1.00000
 
-0.36627
0.1629
Population
-0.25546
0.3396
-0.48850
0.0549
-0.36466
0.1649
-0.28797
0.2794
-0.36627
0.1629
1.00000
 
Scatter Plot Matrix


7) VISUALIZATION: PROC SGPLOT (Top 10 by Composite Score)

proc sgplot data=work.top10_smart;

    vbarparm category=City response=Composite_Score / datalabel;

    xaxis label='City (Top 10)';

    yaxis label='Composite Score';

    title 'Top 10 Smart Cities by Composite Score';

run;

OUTPUT:

The SGPlot Procedure


/* Another plot: scatter of Internet_Penetration vs Composite_Score */

proc sgplot data=work.smart_cities_ranked;

    scatter x=Internet_Penetration_Pct y=Composite_Score / datalabel=City;

    reg x=Internet_Penetration_Pct y=Composite_Score; /* add regression */

    xaxis label='Internet Penetration (%)';

    yaxis label='Composite Score';

    title 'Composite Score vs Internet Penetration';

run;

OUTPUT:

The SGPlot Procedure


8) USING INTCK and INTNX in reporting: create monthly buckets and age of data

data work.smart_cities_time;

    set work.smart_cities_ranked;

    /* bucket = first day of collection month */

    Collection_Month = intnx('month', Data_Collected, 0, 'B');

    format Collection_Month monyy7.;

    Months_Since_Collection = intck('month', Collection_Month, today());

run;

proc print data=work.smart_cities_time; 

  var City Data_Collected Collection_Month Months_Since_Collection;

run;

OUTPUT:

ObsCityData_CollectedCollection_MonthMonths_Since_Collection
1Singapore01JAN2024JAN202422
2Copenhagen15FEB2024FEB202421
3Amsterdam01MAR2024MAR202420
4Tokyo12JAN2024JAN202422
5Seoul20FEB2024FEB202421
6Barcelona05MAR2024MAR202420
7Dubai10JAN2024JAN202422
8NewYork25FEB2024FEB202421
9Helsinki18MAR2024MAR202420
10Zurich22JAN2024JAN202422
11Shanghai02FEB2024FEB202421
12Bangalore28FEB2024FEB202421
13Melbourne03MAR2024MAR202420
14Toronto17FEB2024FEB202421
15Stockholm07JAN2024JAN202422
16Reykjavik11MAR2024MAR202420


/* Frequency of collection months */

proc freq data=work.smart_cities_time; 

  tables Collection_Month / nocum; 

  format Collection_Month monyy7.;

run;

OUTPUT:

The FREQ Procedure

Collection_MonthFrequencyPercent
JAN2024531.25
FEB2024637.50
MAR2024531.25

9) EXTENSIONS: Additional macros and automation examples

%macro region_reports(indata=work.smart_cities_ranked);

    proc sql noprint;

        select distinct Region 

        into :rlist separated by '|' 

        from &indata.;

    quit;


    %let nregions=%sysfunc(countw(&rlist., |));


    %do i=1 %to &nregions.;

        %let region=%scan(&rlist., &i., |);

        %put Generating report for &region.;


        data work._region_&i.;

            set &indata.;

            where Region = "&region.";

        run;

proc print data=work._region_&i.;

run;

    %end;

%mend region_reports;


%region_reports();

OUTPUT:

ObsData_CollectedLast_UpdatedCityCountryRegionPopulationSmart_Infrastructure_ScoreEnergy_EfficiencyInternet_PenetrationSustainability_IndexDays_Since_CollectedEnergy_Efficiency_ScaledInternet_Penetration_PctSustainability_Index_ScaledComposite_ScoreFlag_MissingCategoryRank_Composite
101JAN202401JUL2024SingaporeSingaporeAsia56387009588.598.090.569888.598.090.593.301Top2
212JAN202412JUL2024TokyoJapanAsia139292868578.393.586.268778.393.586.285.211High10
320FEB202420AUG2024SeoulSouthKoreaAsia97760008476.492.085.564876.492.085.583.931High12
402FEB202402AUG2024ShanghaiChinaAsia263171048270.191.083.566670.191.083.581.051High14
528FEB202428AUG2024BangaloreIndiaAsia84436757464.582.075.464064.582.075.473.441Medium17
ObsData_CollectedLast_UpdatedCityCountryRegionPopulationSmart_Infrastructure_ScoreEnergy_EfficiencyInternet_PenetrationSustainability_IndexDays_Since_CollectedEnergy_Efficiency_ScaledInternet_Penetration_PctSustainability_Index_ScaledComposite_ScoreFlag_MissingCategoryRank_Composite
115FEB202415AUG2024CopenhagenDenmarkEurope7941289085.296.088.165385.296.088.189.721High5
201MAR202401SEP2024AmsterdamNetherlandsEurope8727578882.095.087.063882.095.087.087.751High7
305MAR202405SEP2024BarcelonaSpainEurope16203438074.090.282.863474.090.282.880.961High15
418MAR202418SEP2024HelsinkiFinlandEurope6552819187.097.089.762187.097.089.791.011Top4
522JAN202422JUL2024ZurichSwitzerlandEurope4340089286.896.590.367786.896.590.391.351Top3
607JAN202407JUL2024StockholmSwedenEurope9759048984.096.288.669284.096.288.689.131High6
711MAR202411SEP2024ReykjavikIcelandEurope1311367881.598.086.062881.598.086.084.081High11
ObsData_CollectedLast_UpdatedCityCountryRegionPopulationSmart_Infrastructure_ScoreEnergy_EfficiencyInternet_PenetrationSustainability_IndexDays_Since_CollectedEnergy_Efficiency_ScaledInternet_Penetration_PctSustainability_Index_ScaledComposite_ScoreFlag_MissingCategoryRank_Composite
110JAN202410JUL2024DubaiUAEMiddleEast33314207968.58878.568968.58878.578.11Medium16
ObsData_CollectedLast_UpdatedCityCountryRegionPopulationSmart_Infrastructure_ScoreEnergy_EfficiencyInternet_PenetrationSustainability_IndexDays_Since_CollectedEnergy_Efficiency_ScaledInternet_Penetration_PctSustainability_Index_ScaledComposite_ScoreFlag_MissingCategoryRank_Composite
125FEB202425AUG2024NewYorkUSANorthAmerica84190008680.294.084.964380.294.084.985.991High9
217FEB202417AUG2024TorontoCanadaNorthAmerica27315718779.095.585.765179.095.585.786.511High8
ObsData_CollectedLast_UpdatedCityCountryRegionPopulationSmart_Infrastructure_ScoreEnergy_EfficiencyInternet_PenetrationSustainability_IndexDays_Since_CollectedEnergy_Efficiency_ScaledInternet_Penetration_PctSustainability_Index_ScaledComposite_ScoreFlag_MissingCategoryRank_Composite
103MAR202403SEP2024MelbourneAustraliaOceania50781938375.592.78463675.592.78483.221High13




To Visit My Previous Original Data Management Dataset:Click Here
To Visit My Previous Cricket World Cup Dataset:Click Here
To Visit My Previous Home Tour Dataset:Click Here
To Visit My Previous Real-World Dal Price Dataset:Click Here  



Follow Us On : 


 


--- FOLLOW OUR BLOG FOR MORE INFORMATION.

--->PLEASE DO COMMENTS AND SHARE OUR BLOG.






No comments:

Post a Comment