378.CAN SAS REALLY DETECT INSURANCE FRAUD AND CONTROL CLAIM LOSSES USING REAL DATA ANALYTICS?
CAN SAS REALLY DETECT INSURANCE FRAUD AND CONTROL CLAIM LOSSES USING REAL DATA ANALYTICS?
HERE IN THIS PROJECT WE USED THESE SAS STATEMENTS ---DATA STEP | PROC SQL | PROC FREQ | PROC MEANS | PROC UNIVARIATE | MACROS | MDY | INTCK | INTNX | SET | MERGE | APPEND | TRANSPOSE | SAS FUNCTIONS
1. BUSINESS CONTEXT – Why Insurance Claim
Analytics Matters
Insurance
companies process millions of claims every year.
Each claim is a potential financial risk.
Insurance
analytics teams focus on:
•
Detecting fraud
• Reducing claim leakage
• Improving settlement turnaround
• Identifying risky policies
• Ensuring regulatory compliance
Fraud can
occur in:
• Health
insurance
• Motor insurance
• Property insurance
• Life insurance
• Travel insurance
Even 1–2%
fraud can cause crores of loss annually.
This SAS
project simulates a real-world claim processing system where:
• Claims
arrive
• Risk is calculated
• Fraud is flagged
• Settlement is decided
2. Project Learning
Objectives
By
completing this project, you will master:
• DATA
step programming
• PROC SQL joins & calculations
• Risk scoring logic
• Fraud flagging with macros
• Date difference calculations
• Claim settlement analysis
• Production-style SAS coding
3. Creating Raw Insurance Claims Dataset
data claims_raw;
format Claim_Date Submission_Date date9.;
input Claim_ID $ Policy_Type $ Claim_Amount Approval_Time Fraud_Flag$ Settlement_Status $
Claim_Date:date9. Submission_Date:date9.;
datalines;
C001 Health 120000 5 N Approved 01JAN2024 28DEC2023
C002 Motor 450000 12 Y Pending 05JAN2024 20DEC2023
C003 Travel 60000 3 N Approved 10JAN2024 08JAN2024
C004 Property 950000 25 Y Rejected 12JAN2024 01JAN2024
C005 Health 180000 7 N Approved 15JAN2024 10JAN2024
C006 Motor 320000 15 Y Pending 18JAN2024 02JAN2024
C007 Health 75000 4 N Approved 20JAN2024 17JAN2024
C008 Property 1500000 30 Y Rejected 25JAN2024 05JAN2024
C009 Travel 45000 2 N Approved 28JAN2024 27JAN2024
C010 Motor 280000 10 N Approved 30JAN2024 20JAN2024
C011 Health 220000 9 N Approved 02FEB2024 25JAN2024
C012 Property 680000 18 Y Pending 05FEB2024 15JAN2024
C013 Travel 55000 3 N Approved 07FEB2024 06FEB2024
C014 Motor 410000 14 Y Pending 10FEB2024 28JAN2024
C015 Health 195000 8 N Approved 12FEB2024 05FEB2024
;
run;
proc print data=claims_raw;
run;
OUTPUT:
| Obs | Claim_Date | Submission_Date | Claim_ID | Policy_Type | Claim_Amount | Approval_Time | Fraud_Flag | Settlement_Status |
|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2024 | 28DEC2023 | C001 | Health | 120000 | 5 | N | Approved |
| 2 | 05JAN2024 | 20DEC2023 | C002 | Motor | 450000 | 12 | Y | Pending |
| 3 | 10JAN2024 | 08JAN2024 | C003 | Travel | 60000 | 3 | N | Approved |
| 4 | 12JAN2024 | 01JAN2024 | C004 | Property | 950000 | 25 | Y | Rejected |
| 5 | 15JAN2024 | 10JAN2024 | C005 | Health | 180000 | 7 | N | Approved |
| 6 | 18JAN2024 | 02JAN2024 | C006 | Motor | 320000 | 15 | Y | Pending |
| 7 | 20JAN2024 | 17JAN2024 | C007 | Health | 75000 | 4 | N | Approved |
| 8 | 25JAN2024 | 05JAN2024 | C008 | Property | 1500000 | 30 | Y | Rejected |
| 9 | 28JAN2024 | 27JAN2024 | C009 | Travel | 45000 | 2 | N | Approved |
| 10 | 30JAN2024 | 20JAN2024 | C010 | Motor | 280000 | 10 | N | Approved |
| 11 | 02FEB2024 | 25JAN2024 | C011 | Health | 220000 | 9 | N | Approved |
| 12 | 05FEB2024 | 15JAN2024 | C012 | Property | 680000 | 18 | Y | Pending |
| 13 | 07FEB2024 | 06FEB2024 | C013 | Travel | 55000 | 3 | N | Approved |
| 14 | 10FEB2024 | 28JAN2024 | C014 | Motor | 410000 | 14 | Y | Pending |
| 15 | 12FEB2024 | 05FEB2024 | C015 | Health | 195000 | 8 | N | Approved |
4. Date Calculations using INTCK
data claims_dates;
set claims_raw;
Days_To_Submit = intck('day', Submission_Date, Claim_Date);
run;
proc print data=claims_dates;
run;
OUTPUT:
| Obs | Claim_Date | Submission_Date | Claim_ID | Policy_Type | Claim_Amount | Approval_Time | Fraud_Flag | Settlement_Status | Days_To_Submit |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2024 | 28DEC2023 | C001 | Health | 120000 | 5 | N | Approved | 4 |
| 2 | 05JAN2024 | 20DEC2023 | C002 | Motor | 450000 | 12 | Y | Pending | 16 |
| 3 | 10JAN2024 | 08JAN2024 | C003 | Travel | 60000 | 3 | N | Approved | 2 |
| 4 | 12JAN2024 | 01JAN2024 | C004 | Property | 950000 | 25 | Y | Rejected | 11 |
| 5 | 15JAN2024 | 10JAN2024 | C005 | Health | 180000 | 7 | N | Approved | 5 |
| 6 | 18JAN2024 | 02JAN2024 | C006 | Motor | 320000 | 15 | Y | Pending | 16 |
| 7 | 20JAN2024 | 17JAN2024 | C007 | Health | 75000 | 4 | N | Approved | 3 |
| 8 | 25JAN2024 | 05JAN2024 | C008 | Property | 1500000 | 30 | Y | Rejected | 20 |
| 9 | 28JAN2024 | 27JAN2024 | C009 | Travel | 45000 | 2 | N | Approved | 1 |
| 10 | 30JAN2024 | 20JAN2024 | C010 | Motor | 280000 | 10 | N | Approved | 10 |
| 11 | 02FEB2024 | 25JAN2024 | C011 | Health | 220000 | 9 | N | Approved | 8 |
| 12 | 05FEB2024 | 15JAN2024 | C012 | Property | 680000 | 18 | Y | Pending | 21 |
| 13 | 07FEB2024 | 06FEB2024 | C013 | Travel | 55000 | 3 | N | Approved | 1 |
| 14 | 10FEB2024 | 28JAN2024 | C014 | Motor | 410000 | 14 | Y | Pending | 13 |
| 15 | 12FEB2024 | 05FEB2024 | C015 | Health | 195000 | 8 | N | Approved | 7 |
claims_dates (INTCK)
• Calculates submission delay, a key fraud
indicator.
• Helps identify rushed or delayed claims.
• Used in regulatory turnaround tracking.
5. Risk Score Calculation
data claims_risk;
set claims_dates;
Risk_Score = (Claim_Amount/10000) + Approval_Time + (Days_To_Submit*2);
run;
proc print data=claims_risk;
run;
OUTPUT:
| Obs | Claim_Date | Submission_Date | Claim_ID | Policy_Type | Claim_Amount | Approval_Time | Fraud_Flag | Settlement_Status | Days_To_Submit | Risk_Score |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2024 | 28DEC2023 | C001 | Health | 120000 | 5 | N | Approved | 4 | 25.0 |
| 2 | 05JAN2024 | 20DEC2023 | C002 | Motor | 450000 | 12 | Y | Pending | 16 | 89.0 |
| 3 | 10JAN2024 | 08JAN2024 | C003 | Travel | 60000 | 3 | N | Approved | 2 | 13.0 |
| 4 | 12JAN2024 | 01JAN2024 | C004 | Property | 950000 | 25 | Y | Rejected | 11 | 142.0 |
| 5 | 15JAN2024 | 10JAN2024 | C005 | Health | 180000 | 7 | N | Approved | 5 | 35.0 |
| 6 | 18JAN2024 | 02JAN2024 | C006 | Motor | 320000 | 15 | Y | Pending | 16 | 79.0 |
| 7 | 20JAN2024 | 17JAN2024 | C007 | Health | 75000 | 4 | N | Approved | 3 | 17.5 |
| 8 | 25JAN2024 | 05JAN2024 | C008 | Property | 1500000 | 30 | Y | Rejected | 20 | 220.0 |
| 9 | 28JAN2024 | 27JAN2024 | C009 | Travel | 45000 | 2 | N | Approved | 1 | 8.5 |
| 10 | 30JAN2024 | 20JAN2024 | C010 | Motor | 280000 | 10 | N | Approved | 10 | 58.0 |
| 11 | 02FEB2024 | 25JAN2024 | C011 | Health | 220000 | 9 | N | Approved | 8 | 47.0 |
| 12 | 05FEB2024 | 15JAN2024 | C012 | Property | 680000 | 18 | Y | Pending | 21 | 128.0 |
| 13 | 07FEB2024 | 06FEB2024 | C013 | Travel | 55000 | 3 | N | Approved | 1 | 10.5 |
| 14 | 10FEB2024 | 28JAN2024 | C014 | Motor | 410000 | 14 | Y | Pending | 13 | 81.0 |
| 15 | 12FEB2024 | 05FEB2024 | C015 | Health | 195000 | 8 | N | Approved | 7 | 41.5 |
claims_risk
• Converts multiple claim factors into one
numeric score.
• Enables ranking of claims by financial risk.
• Supports automated fraud logic.
6. Character Cleaning
data claims_clean;
set claims_risk;
Policy_Type = propcase(strip(Policy_Type));
Settlement_Status = upcase(trim(Settlement_Status));
run;
proc print data=claims_clean;
run;
OUTPUT:
| Obs | Claim_Date | Submission_Date | Claim_ID | Policy_Type | Claim_Amount | Approval_Time | Fraud_Flag | Settlement_Status | Days_To_Submit | Risk_Score |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2024 | 28DEC2023 | C001 | Health | 120000 | 5 | N | APPROVED | 4 | 25.0 |
| 2 | 05JAN2024 | 20DEC2023 | C002 | Motor | 450000 | 12 | Y | PENDING | 16 | 89.0 |
| 3 | 10JAN2024 | 08JAN2024 | C003 | Travel | 60000 | 3 | N | APPROVED | 2 | 13.0 |
| 4 | 12JAN2024 | 01JAN2024 | C004 | Property | 950000 | 25 | Y | REJECTED | 11 | 142.0 |
| 5 | 15JAN2024 | 10JAN2024 | C005 | Health | 180000 | 7 | N | APPROVED | 5 | 35.0 |
| 6 | 18JAN2024 | 02JAN2024 | C006 | Motor | 320000 | 15 | Y | PENDING | 16 | 79.0 |
| 7 | 20JAN2024 | 17JAN2024 | C007 | Health | 75000 | 4 | N | APPROVED | 3 | 17.5 |
| 8 | 25JAN2024 | 05JAN2024 | C008 | Property | 1500000 | 30 | Y | REJECTED | 20 | 220.0 |
| 9 | 28JAN2024 | 27JAN2024 | C009 | Travel | 45000 | 2 | N | APPROVED | 1 | 8.5 |
| 10 | 30JAN2024 | 20JAN2024 | C010 | Motor | 280000 | 10 | N | APPROVED | 10 | 58.0 |
| 11 | 02FEB2024 | 25JAN2024 | C011 | Health | 220000 | 9 | N | APPROVED | 8 | 47.0 |
| 12 | 05FEB2024 | 15JAN2024 | C012 | Property | 680000 | 18 | Y | PENDING | 21 | 128.0 |
| 13 | 07FEB2024 | 06FEB2024 | C013 | Travel | 55000 | 3 | N | APPROVED | 1 | 10.5 |
| 14 | 10FEB2024 | 28JAN2024 | C014 | Motor | 410000 | 14 | Y | PENDING | 13 | 81.0 |
| 15 | 12FEB2024 | 05FEB2024 | C015 | Health | 195000 | 8 | N | APPROVED | 7 | 41.5 |
claims_clean (Character Functions)
• Standardizes text values for accurate grouping.
• Prevents duplicate categories caused by case or spaces.
• Improves PROC SQL and PROC FREQ reliability.
7. Fraud Detection Macro
%macro fraud_flag(input=, output=);
data &output;
set &input;
length Fraud_Category $12;
if Risk_Score > 80 then Fraud_Category = "HIGH";
else if Risk_Score > 50 then Fraud_Category = "MEDIUM";
else Fraud_Category = "LOW";
run;
proc print data=&output;
run;
%mend;
%fraud_flag(input=claims_clean, output=claims_flagged);
OUTPUT:
| Obs | Claim_Date | Submission_Date | Claim_ID | Policy_Type | Claim_Amount | Approval_Time | Fraud_Flag | Settlement_Status | Days_To_Submit | Risk_Score | Fraud_Category |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2024 | 28DEC2023 | C001 | Health | 120000 | 5 | N | APPROVED | 4 | 25.0 | LOW |
| 2 | 05JAN2024 | 20DEC2023 | C002 | Motor | 450000 | 12 | Y | PENDING | 16 | 89.0 | HIGH |
| 3 | 10JAN2024 | 08JAN2024 | C003 | Travel | 60000 | 3 | N | APPROVED | 2 | 13.0 | LOW |
| 4 | 12JAN2024 | 01JAN2024 | C004 | Property | 950000 | 25 | Y | REJECTED | 11 | 142.0 | HIGH |
| 5 | 15JAN2024 | 10JAN2024 | C005 | Health | 180000 | 7 | N | APPROVED | 5 | 35.0 | LOW |
| 6 | 18JAN2024 | 02JAN2024 | C006 | Motor | 320000 | 15 | Y | PENDING | 16 | 79.0 | MEDIUM |
| 7 | 20JAN2024 | 17JAN2024 | C007 | Health | 75000 | 4 | N | APPROVED | 3 | 17.5 | LOW |
| 8 | 25JAN2024 | 05JAN2024 | C008 | Property | 1500000 | 30 | Y | REJECTED | 20 | 220.0 | HIGH |
| 9 | 28JAN2024 | 27JAN2024 | C009 | Travel | 45000 | 2 | N | APPROVED | 1 | 8.5 | LOW |
| 10 | 30JAN2024 | 20JAN2024 | C010 | Motor | 280000 | 10 | N | APPROVED | 10 | 58.0 | MEDIUM |
| 11 | 02FEB2024 | 25JAN2024 | C011 | Health | 220000 | 9 | N | APPROVED | 8 | 47.0 | LOW |
| 12 | 05FEB2024 | 15JAN2024 | C012 | Property | 680000 | 18 | Y | PENDING | 21 | 128.0 | HIGH |
| 13 | 07FEB2024 | 06FEB2024 | C013 | Travel | 55000 | 3 | N | APPROVED | 1 | 10.5 | LOW |
| 14 | 10FEB2024 | 28JAN2024 | C014 | Motor | 410000 | 14 | Y | PENDING | 13 | 81.0 | HIGH |
| 15 | 12FEB2024 | 05FEB2024 | C015 | Health | 195000 | 8 | N | APPROVED | 7 | 41.5 | LOW |
fraud_flag Macro
• Automates fraud classification logic.
• Allows consistent risk grading across datasets.
• Supports production-level reuse.
8. PROC FREQ – Fraud Patterns
proc freq data=claims_flagged;
tables Fraud_Category*Settlement_Status;
run;
OUTPUT:
The FREQ Procedure
|
| |||||||||||||||||||||||||||||||||||
PROC FREQ
• Detects fraud patterns by settlement status.
• Identifies abnormal approval behavior.
• Used in compliance audits.
9. PROC MEANS – Financial Risk
proc means data=claims_flagged mean sum max;
class Fraud_Category;
var Claim_Amount Risk_Score;
run;
OUTPUT:
The MEANS Procedure
| Fraud_Category | N Obs | Variable | Mean | Sum | Maximum |
|---|---|---|---|---|---|
| HIGH | 5 | Claim_Amount Risk_Score | 798000.00 132.0000000 | 3990000.00 660.0000000 | 1500000.00 220.0000000 |
| LOW | 8 | Claim_Amount Risk_Score | 118750.00 24.7500000 | 950000.00 198.0000000 | 220000.00 47.0000000 |
| MEDIUM | 2 | Claim_Amount Risk_Score | 300000.00 68.5000000 | 600000.00 137.0000000 | 320000.00 79.0000000 |
PROC MEANS
• Summarizes claim exposure by risk level.
• Measures financial impact of fraud.
• Supports management reporting.
10. PROC UNIVARIATE – Risk Distribution
proc univariate data=claims_flagged;
var Risk_Score;
run;
OUTPUT:
The UNIVARIATE Procedure
Variable: Risk_Score
| Moments | |||
|---|---|---|---|
| N | 15 | Sum Weights | 15 |
| Mean | 66.3333333 | Sum Observations | 995 |
| Std Deviation | 59.4452529 | Variance | 3533.7381 |
| Skewness | 1.39401055 | Kurtosis | 1.90037472 |
| Uncorrected SS | 115474 | Corrected SS | 49472.3333 |
| Coeff Variation | 89.6159592 | Std Error Mean | 15.3486983 |
| Basic Statistical Measures | |||
|---|---|---|---|
| Location | Variability | ||
| Mean | 66.33333 | Std Deviation | 59.44525 |
| Median | 47.00000 | Variance | 3534 |
| Mode | . | Range | 211.50000 |
| Interquartile Range | 71.50000 | ||
| Tests for Location: Mu0=0 | ||||
|---|---|---|---|---|
| Test | Statistic | p Value | ||
| Student's t | t | 4.321756 | Pr > |t| | 0.0007 |
| Sign | M | 7.5 | Pr >= |M| | <.0001 |
| Signed Rank | S | 60 | Pr >= |S| | <.0001 |
| Quantiles (Definition 5) | |
|---|---|
| Level | Quantile |
| 100% Max | 220.0 |
| 99% | 220.0 |
| 95% | 220.0 |
| 90% | 142.0 |
| 75% Q3 | 89.0 |
| 50% Median | 47.0 |
| 25% Q1 | 17.5 |
| 10% | 10.5 |
| 5% | 8.5 |
| 1% | 8.5 |
| 0% Min | 8.5 |
| Extreme Observations | |||
|---|---|---|---|
| Lowest | Highest | ||
| Value | Obs | Value | Obs |
| 8.5 | 9 | 81 | 14 |
| 10.5 | 13 | 89 | 2 |
| 13.0 | 3 | 128 | 12 |
| 17.5 | 7 | 142 | 4 |
| 25.0 | 1 | 220 | 8 |
PROC UNIVARIATE
• Analyzes risk score distribution.
• Detects extreme or suspicious values.
• Supports fraud threshold tuning.
11. PROC SQL – High Risk Claims
proc sql;
create table high_risk as
select Claim_ID, Policy_Type, Claim_Amount, Risk_Score
from claims_flagged
where Risk_Score > 70;
quit;
proc print data=high_risk;
run;
OUTPUT:
| Obs | Claim_ID | Policy_Type | Claim_Amount | Risk_Score |
|---|---|---|---|---|
| 1 | C002 | Motor | 450000 | 89 |
| 2 | C004 | Property | 950000 | 142 |
| 3 | C006 | Motor | 320000 | 79 |
| 4 | C008 | Property | 1500000 | 220 |
| 5 | C012 | Property | 680000 | 128 |
| 6 | C014 | Motor | 410000 | 81 |
PROC SQL
• Filters and extracts high-risk claims.
• Enables audit-ready fraud listings.
• Supports investigator review.
12. PROC TRANSPOSE – Reporting
proc transpose data=claims_flagged out=claims_transposed;
by Policy_Type NotSorted;
id Fraud_Category;
var Claim_Amount;
run;
proc print data=claims_transposed;
run;
OUTPUT:
| Obs | Policy_Type | _NAME_ | LOW | HIGH | MEDIUM |
|---|---|---|---|---|---|
| 1 | Health | Claim_Amount | 120000 | . | . |
| 2 | Motor | Claim_Amount | . | 450000 | . |
| 3 | Travel | Claim_Amount | 60000 | . | . |
| 4 | Property | Claim_Amount | . | 950000 | . |
| 5 | Health | Claim_Amount | 180000 | . | . |
| 6 | Motor | Claim_Amount | . | . | 320000 |
| 7 | Health | Claim_Amount | 75000 | . | . |
| 8 | Property | Claim_Amount | . | 1500000 | . |
| 9 | Travel | Claim_Amount | 45000 | . | . |
| 10 | Motor | Claim_Amount | . | . | 280000 |
| 11 | Health | Claim_Amount | 220000 | . | . |
| 12 | Property | Claim_Amount | . | 680000 | . |
| 13 | Travel | Claim_Amount | 55000 | . | . |
| 14 | Motor | Claim_Amount | . | 410000 | . |
| 15 | Health | Claim_Amount | 195000 | . | . |
PROC TRANSPOSE
• Converts risk categories into report-ready
columns.
• Used for dashboard and executive summaries.
• Improves visualization structure.
13. PROC APPEND
proc append base=claims_flagged
data=high_risk;
run;
proc print data=claims_flagged;
run;
OUTPUT:
| Obs | Claim_Date | Submission_Date | Claim_ID | Policy_Type | Claim_Amount | Approval_Time | Fraud_Flag | Settlement_Status | Days_To_Submit | Risk_Score | Fraud_Category |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 01JAN2024 | 28DEC2023 | C001 | Health | 120000 | 5 | N | APPROVED | 4 | 25.0 | LOW |
| 2 | 05JAN2024 | 20DEC2023 | C002 | Motor | 450000 | 12 | Y | PENDING | 16 | 89.0 | HIGH |
| 3 | 10JAN2024 | 08JAN2024 | C003 | Travel | 60000 | 3 | N | APPROVED | 2 | 13.0 | LOW |
| 4 | 12JAN2024 | 01JAN2024 | C004 | Property | 950000 | 25 | Y | REJECTED | 11 | 142.0 | HIGH |
| 5 | 15JAN2024 | 10JAN2024 | C005 | Health | 180000 | 7 | N | APPROVED | 5 | 35.0 | LOW |
| 6 | 18JAN2024 | 02JAN2024 | C006 | Motor | 320000 | 15 | Y | PENDING | 16 | 79.0 | MEDIUM |
| 7 | 20JAN2024 | 17JAN2024 | C007 | Health | 75000 | 4 | N | APPROVED | 3 | 17.5 | LOW |
| 8 | 25JAN2024 | 05JAN2024 | C008 | Property | 1500000 | 30 | Y | REJECTED | 20 | 220.0 | HIGH |
| 9 | 28JAN2024 | 27JAN2024 | C009 | Travel | 45000 | 2 | N | APPROVED | 1 | 8.5 | LOW |
| 10 | 30JAN2024 | 20JAN2024 | C010 | Motor | 280000 | 10 | N | APPROVED | 10 | 58.0 | MEDIUM |
| 11 | 02FEB2024 | 25JAN2024 | C011 | Health | 220000 | 9 | N | APPROVED | 8 | 47.0 | LOW |
| 12 | 05FEB2024 | 15JAN2024 | C012 | Property | 680000 | 18 | Y | PENDING | 21 | 128.0 | HIGH |
| 13 | 07FEB2024 | 06FEB2024 | C013 | Travel | 55000 | 3 | N | APPROVED | 1 | 10.5 | LOW |
| 14 | 10FEB2024 | 28JAN2024 | C014 | Motor | 410000 | 14 | Y | PENDING | 13 | 81.0 | HIGH |
| 15 | 12FEB2024 | 05FEB2024 | C015 | Health | 195000 | 8 | N | APPROVED | 7 | 41.5 | LOW |
| 16 | . | . | C002 | Motor | 450000 | . | . | 89.0 | |||
| 17 | . | . | C004 | Property | 950000 | . | . | 142.0 | |||
| 18 | . | . | C006 | Motor | 320000 | . | . | 79.0 | |||
| 19 | . | . | C008 | Property | 1500000 | . | . | 220.0 | |||
| 20 | . | . | C012 | Property | 680000 | . | . | 128.0 | |||
| 21 | . | . | C014 | Motor | 410000 | . | . | 81.0 |
PROC APPEND
• Merges high-risk cases back into master data.
• Preserves fraud tracking history.
• Used in risk escalation pipelines.
14. PROC DATASETS – Cleanup
proc datasets library=work;
delete claims_transposed;
quit;
PROC DATASETS DELETE
•
Removes temporary working tables.
• Reduces memory and workspace clutter.
• Maintains production data hygiene.
15. WHAT THIS PROJECT TEACH US
This is exactly
how insurance companies build:
• Fraud detection engines
• Claim risk scoring models
• Settlement decision systems
• Regulatory reports
• Financial risk dashboards
We practiced:
• Real SAS data engineering
• Real business rules
• Real fraud logic
• Real insurance workflows
This project alone is strong enough for:
• Insurance domain interviews
• Banking analytics roles
• SAS Programmer positions
• Risk & compliance jobs
16. CONCLUSION
This project demonstrated how SAS can be used to
build a complete insurance claims fraud detection and risk scoring system. By
combining DATA steps, PROC SQL, statistical procedures, and macros, we transformed
raw claim data into actionable risk intelligence. The model identified
high-risk claims, optimized settlement decisions, and improved fraud
visibility. This approach mirrors how real insurance companies protect revenue
and ensure regulatory compliance.
INTERVIEW QUESTIONS FOR YOU
About the Author:
SAS Learning Hub is a data analytics and SAS programming platform focused on clinical, financial, and real-world data analysis. The content is created by professionals with academic training in Pharmaceutics and hands-on experience in Base SAS, PROC SQL, Macros, SDTM, and ADaM, providing practical and industry-relevant SAS learning resources.
Disclaimer:
The datasets and analysis in this article are created for educational and demonstration purposes only. They do not represent Insurance Fraud data.
Our Mission:
This blog provides industry-focused SAS programming tutorials and analytics projects covering finance, healthcare, and technology.
This project is suitable for:
SAS Programmer Interviews
SAS Programmer Job Seekers
SAS Analysts
Comments
Post a Comment