Friday, 2 January 2026

358.WATER SOURCES DATA ANALYSIS AND ENVIRONMENTAL RISK EVALUATION USING SAS DATA STEP | PROC CONTENTS | PROC PRINT | PROC SQL | PROC MEANS | PROC FREQ | PROC UNIVARIATE | PROC FORMAT | PROC RANK | PROC TRANSPOSE | PROC APPEND | DATA MERGE | PROC SGPLOT | MACROS | DATE FUNCTIONS (INTCK-INTNX-MDY) | SYSTEM OPTIONS

WATER SOURCES DATA ANALYSIS AND ENVIRONMENTAL RISK EVALUATION USING SAS DATA STEP | PROC CONTENTS | PROC PRINT | PROC SQL | PROC MEANS | PROC FREQ | PROC UNIVARIATE | PROC FORMAT | PROC RANK | PROC TRANSPOSE | PROC APPEND | DATA MERGE | PROC SGPLOT | MACROS | DATE FUNCTIONS (INTCK-INTNX-MDY) | SYSTEM OPTIONS

options nocenter;

1.WATER SOURCES DATA CREATION

data water_sources;

    length Source_Type $20 Country $20 Usage $15;

    format Monitoring_Date date9.;

    input Source_Type $ Country $ Availability Usage $ Pollution_Level Monitoring_Date :date9.;

    datalines;

River India 75 Agriculture 60 15JAN2022

Lake Canada 85 Drinking 20 10FEB2022

Groundwater India 65 Drinking 45 01MAR2022

Desalination UAE 90 Industrial 15 20APR2022

Rainwater Brazil 70 Agriculture 30 18MAY2022

River USA 80 Industrial 55 05JUN2022

Lake Germany 88 Drinking 18 12JUL2022

Groundwater China 60 Agriculture 70 25AUG2022

Desalination Israel 92 Drinking 10 10SEP2022

River Egypt 68 Agriculture 65 30OCT2022

Lake Japan 90 Drinking 12 15NOV2022

Groundwater Mexico 72 Industrial 50 20DEC2022

Rainwater India 78 Domestic 25 05JAN2023

;

run;

proc print data=water_sources;

run;

OUTPUT:

ObsSource_TypeCountryUsageMonitoring_DateAvailabilityPollution_Level
1RiverIndiaAgriculture15JAN20227560
2LakeCanadaDrinking10FEB20228520
3GroundwaterIndiaDrinking01MAR20226545
4DesalinationUAEIndustrial20APR20229015
5RainwaterBrazilAgriculture18MAY20227030
6RiverUSAIndustrial05JUN20228055
7LakeGermanyDrinking12JUL20228818
8GroundwaterChinaAgriculture25AUG20226070
9DesalinationIsraelDrinking10SEP20229210
10RiverEgyptAgriculture30OCT20226865
11LakeJapanDrinking15NOV20229012
12GroundwaterMexicoIndustrial20DEC20227250
13RainwaterIndiaDomestic05JAN20237825


2.BASIC DATA VALIDATION – PROC CONTENTS & PRINT

proc contents data=water_sources;

run;

OUTPUT:

The CONTENTS Procedure

Data Set NameWORK.WATER_SOURCESObservations13
Member TypeDATAVariables6
EngineV9Indexes0
Created01/03/2026 07:29:17Observation Length80
Last Modified01/03/2026 07:29:17Deleted Observations0
Protection CompressedNO
Data Set Type SortedNO
Label   
Data RepresentationSOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64  
Encodingutf-8 Unicode (UTF-8)  
Engine/Host Dependent Information
Data Set Page Size131072
Number of Data Set Pages1
First Data Page1
Max Obs per Page1635
Obs in First Data Page13
Number of Data Set Repairs0
Filename/saswork/SAS_work2CC20001A425_odaws01-apse1-2.oda.sas.com/SAS_work63320001A425_odaws01-apse1-2.oda.sas.com/water_sources.sas7bdat
Release Created9.0401M8
Host CreatedLinux
Inode Number1217211
Access Permissionrw-r--r--
Owner Nameu63247146
File Size256KB
File Size (bytes)262144
Alphabetic List of Variables and Attributes
#VariableTypeLenFormat
5AvailabilityNum8 
2CountryChar20 
4Monitoring_DateNum8DATE9.
6Pollution_LevelNum8 
1Source_TypeChar20 
3UsageChar15 

proc print data=water_sources(obs=5);

run;

OUTPUT:

ObsSource_TypeCountryUsageMonitoring_DateAvailabilityPollution_Level
1RiverIndiaAgriculture15JAN20227560
2LakeCanadaDrinking10FEB20228520
3GroundwaterIndiaDrinking01MAR20226545
4DesalinationUAEIndustrial20APR20229015
5RainwaterBrazilAgriculture18MAY20227030


3.DATE DERIVATIONS – MDY, INTCK, INTNX

data water_dates;

    set water_sources;

    Year = year(Monitoring_Date);

    Quarter_Start = intnx('qtr', Monitoring_Date, 0, 'begin');

    Months_Since_Monitoring = intck('month', Monitoring_Date, today());

    format Quarter_Start date9.;

run;

proc print data=water_dates;

run;

OUTPUT:

ObsSource_TypeCountryUsageMonitoring_DateAvailabilityPollution_LevelYearQuarter_StartMonths_Since_Monitoring
1RiverIndiaAgriculture15JAN20227560202201JAN202248
2LakeCanadaDrinking10FEB20228520202201JAN202247
3GroundwaterIndiaDrinking01MAR20226545202201JAN202246
4DesalinationUAEIndustrial20APR20229015202201APR202245
5RainwaterBrazilAgriculture18MAY20227030202201APR202244
6RiverUSAIndustrial05JUN20228055202201APR202243
7LakeGermanyDrinking12JUL20228818202201JUL202242
8GroundwaterChinaAgriculture25AUG20226070202201JUL202241
9DesalinationIsraelDrinking10SEP20229210202201JUL202240
10RiverEgyptAgriculture30OCT20226865202201OCT202239
11LakeJapanDrinking15NOV20229012202201OCT202238
12GroundwaterMexicoIndustrial20DEC20227250202201OCT202237
13RainwaterIndiaDomestic05JAN20237825202301JAN202336


4.PROC SQL – DATA QUERY & AGGREGATION

proc sql;

    create table pollution_summary as

    select Country,

           Source_Type,

           avg(Pollution_Level) as Avg_Pollution format=8.2,

           count(*) as Records

    from water_dates

    group by Country, Source_Type;

quit;

proc print data=pollution_summary;

run;

OUTPUT:

ObsCountrySource_TypeAvg_PollutionRecords
1BrazilRainwater30.001
2CanadaLake20.001
3ChinaGroundwater70.001
4EgyptRiver65.001
5GermanyLake18.001
6IndiaGroundwater45.001
7IndiaRainwater25.001
8IndiaRiver60.001
9IsraelDesalination10.001
10JapanLake12.001
11MexicoGroundwater50.001
12UAEDesalination15.001
13USARiver55.001


5.PROC MEANS – NUMERIC SUMMARIES

proc means data=water_dates mean min max std;

    class Source_Type;

    var Availability Pollution_Level;

run;

OUTPUT:

The MEANS Procedure

Source_TypeN ObsVariableMeanMinimumMaximumStd Dev
Desalination2
Availability
Pollution_Level
91.0000000
12.5000000
90.0000000
10.0000000
92.0000000
15.0000000
1.4142136
3.5355339
Groundwater3
Availability
Pollution_Level
65.6666667
55.0000000
60.0000000
45.0000000
72.0000000
70.0000000
6.0277138
13.2287566
Lake3
Availability
Pollution_Level
87.6666667
16.6666667
85.0000000
12.0000000
90.0000000
20.0000000
2.5166115
4.1633320
Rainwater2
Availability
Pollution_Level
74.0000000
27.5000000
70.0000000
25.0000000
78.0000000
30.0000000
5.6568542
3.5355339
River3
Availability
Pollution_Level
74.3333333
60.0000000
68.0000000
55.0000000
80.0000000
65.0000000
6.0277138
5.0000000

6.PROC FREQ – CATEGORICAL ANALYSIS

proc freq data=water_dates;

    tables Source_Type*Usage / norow nocol nopercent;

run;

OUTPUT:

The FREQ Procedure

Frequency
Table of Source_Type by Usage
Source_TypeUsage
AgricultureDomesticDrinkingIndustrialTotal
Desalination
0
0
1
1
2
Groundwater
1
0
1
1
3
Lake
0
0
3
0
3
Rainwater
1
1
0
0
2
River
2
0
0
1
3
Total
4
1
5
3
13

7.PROC UNIVARIATE – DISTRIBUTION CHECKS

proc univariate data=water_dates;

    var Pollution_Level;

    histogram Pollution_Level;

run;

OUTPUT:

The UNIVARIATE Procedure

Variable: Pollution_Level

Moments
N13Sum Weights13
Mean36.5384615Sum Observations475
Std Deviation21.6741604Variance469.769231
Skewness0.25733598Kurtosis-1.6447809
Uncorrected SS22993Corrected SS5637.23077
Coeff Variation59.3187549Std Error Mean6.01133052
Basic Statistical Measures
LocationVariability
Mean36.53846Std Deviation21.67416
Median30.00000Variance469.76923
Mode.Range60.00000
  Interquartile Range37.00000
Tests for Location: Mu0=0
TestStatisticp Value
Student's tt6.078265Pr > |t|<.0001
SignM6.5Pr >= |M|0.0002
Signed RankS45.5Pr >= |S|0.0002
Quantiles (Definition 5)
LevelQuantile
100% Max70
99%70
95%70
90%65
75% Q355
50% Median30
25% Q118
10%12
5%10
1%10
0% Min10
Extreme Observations
LowestHighest
ValueObsValueObs
1095012
1211556
154601
1876510
202708

The UNIVARIATE Procedure

Histogram for Pollution_Level

8.PROC FORMAT – CUSTOM CLASSIFICATION

proc format;

    value pollution_fmt

        low - 30 = 'Low'

        31 - 60 = 'Moderate'

        61 - high = 'High';

run;

LOG:

NOTE: Format POLLUTION_FMT has been output.

data water_formatted;

    set water_dates;

    Pollution_Category = put(Pollution_Level, pollution_fmt.);

run;

proc print data=water_formatted;

run;

OUTPUT:

ObsSource_TypeCountryUsageMonitoring_DateAvailabilityPollution_LevelYearQuarter_StartMonths_Since_MonitoringPollution_Category
1RiverIndiaAgriculture15JAN20227560202201JAN202248Moderate
2LakeCanadaDrinking10FEB20228520202201JAN202247Low
3GroundwaterIndiaDrinking01MAR20226545202201JAN202246Moderate
4DesalinationUAEIndustrial20APR20229015202201APR202245Low
5RainwaterBrazilAgriculture18MAY20227030202201APR202244Low
6RiverUSAIndustrial05JUN20228055202201APR202243Moderate
7LakeGermanyDrinking12JUL20228818202201JUL202242Low
8GroundwaterChinaAgriculture25AUG20226070202201JUL202241High
9DesalinationIsraelDrinking10SEP20229210202201JUL202240Low
10RiverEgyptAgriculture30OCT20226865202201OCT202239High
11LakeJapanDrinking15NOV20229012202201OCT202238Low
12GroundwaterMexicoIndustrial20DEC20227250202201OCT202237Moderate
13RainwaterIndiaDomestic05JAN20237825202301JAN202336Low


9.PROC RANK – POLLUTION RANKING

proc rank data=water_formatted out=water_ranked descending;

    var Pollution_Level;

    ranks Pollution_Rank;

run;

proc print data=water_ranked;

run;

OUTPUT:

ObsSource_TypeCountryUsageMonitoring_DateAvailabilityPollution_LevelYearQuarter_StartMonths_Since_MonitoringPollution_CategoryPollution_Rank
1RiverIndiaAgriculture15JAN20227560202201JAN202248Moderate3
2LakeCanadaDrinking10FEB20228520202201JAN202247Low9
3GroundwaterIndiaDrinking01MAR20226545202201JAN202246Moderate6
4DesalinationUAEIndustrial20APR20229015202201APR202245Low11
5RainwaterBrazilAgriculture18MAY20227030202201APR202244Low7
6RiverUSAIndustrial05JUN20228055202201APR202243Moderate4
7LakeGermanyDrinking12JUL20228818202201JUL202242Low10
8GroundwaterChinaAgriculture25AUG20226070202201JUL202241High1
9DesalinationIsraelDrinking10SEP20229210202201JUL202240Low13
10RiverEgyptAgriculture30OCT20226865202201OCT202239High2
11LakeJapanDrinking15NOV20229012202201OCT202238Low12
12GroundwaterMexicoIndustrial20DEC20227250202201OCT202237Moderate5
13RainwaterIndiaDomestic05JAN20237825202301JAN202336Low8


10.MACRO – AUTOMATED CLASSIFICATION

%macro pollution_flag;

data water_flagged;

     Length Risk_Flag $10.;

    set water_ranked;

    if Pollution_Level >= 60 then Risk_Flag = 'HIGH';

    else if Pollution_Level >= 30 then Risk_Flag = 'MEDIUM';

    else Risk_Flag = 'LOW';

run;

run;

proc print data=water_flagged;

run;

%mend;


%pollution_flag;

OUTPUT:

ObsRisk_FlagSource_TypeCountryUsageMonitoring_DateAvailabilityPollution_LevelYearQuarter_StartMonths_Since_MonitoringPollution_CategoryPollution_Rank
1HIGHRiverIndiaAgriculture15JAN20227560202201JAN202248Moderate3
2LOWLakeCanadaDrinking10FEB20228520202201JAN202247Low9
3MEDIUMGroundwaterIndiaDrinking01MAR20226545202201JAN202246Moderate6
4LOWDesalinationUAEIndustrial20APR20229015202201APR202245Low11
5MEDIUMRainwaterBrazilAgriculture18MAY20227030202201APR202244Low7
6MEDIUMRiverUSAIndustrial05JUN20228055202201APR202243Moderate4
7LOWLakeGermanyDrinking12JUL20228818202201JUL202242Low10
8HIGHGroundwaterChinaAgriculture25AUG20226070202201JUL202241High1
9LOWDesalinationIsraelDrinking10SEP20229210202201JUL202240Low13
10HIGHRiverEgyptAgriculture30OCT20226865202201OCT202239High2
11LOWLakeJapanDrinking15NOV20229012202201OCT202238Low12
12MEDIUMGroundwaterMexicoIndustrial20DEC20227250202201OCT202237Moderate5
13LOWRainwaterIndiaDomestic05JAN20237825202301JAN202336Low8


11.PROC TRANSPOSE – STRUCTURAL TRANSFORMATION

proc transpose data=water_flagged out=water_transposed;

    by Country NotSorted;

    var Availability Pollution_Level;

run;

proc print data=water_transposed;

run;

OUTPUT:

ObsCountry_NAME_COL1
1IndiaAvailability75
2IndiaPollution_Level60
3CanadaAvailability85
4CanadaPollution_Level20
5IndiaAvailability65
6IndiaPollution_Level45
7UAEAvailability90
8UAEPollution_Level15
9BrazilAvailability70
10BrazilPollution_Level30
11USAAvailability80
12USAPollution_Level55
13GermanyAvailability88
14GermanyPollution_Level18
15ChinaAvailability60
16ChinaPollution_Level70
17IsraelAvailability92
18IsraelPollution_Level10
19EgyptAvailability68
20EgyptPollution_Level65
21JapanAvailability90
22JapanPollution_Level12
23MexicoAvailability72
24MexicoPollution_Level50
25IndiaAvailability78
26IndiaPollution_Level25


12.PROC APPEND – DATASET COMBINATION

proc append base=water_flagged 

            data=water_flagged force;

run;

proc print data=water_flagged;

run;

OUTPUT:

ObsRisk_FlagSource_TypeCountryUsageMonitoring_DateAvailabilityPollution_LevelYearQuarter_StartMonths_Since_MonitoringPollution_CategoryPollution_Rank
1HIGHRiverIndiaAgriculture15JAN20227560202201JAN202248Moderate3
2LOWLakeCanadaDrinking10FEB20228520202201JAN202247Low9
3MEDIUMGroundwaterIndiaDrinking01MAR20226545202201JAN202246Moderate6
4LOWDesalinationUAEIndustrial20APR20229015202201APR202245Low11
5MEDIUMRainwaterBrazilAgriculture18MAY20227030202201APR202244Low7
6MEDIUMRiverUSAIndustrial05JUN20228055202201APR202243Moderate4
7LOWLakeGermanyDrinking12JUL20228818202201JUL202242Low10
8HIGHGroundwaterChinaAgriculture25AUG20226070202201JUL202241High1
9LOWDesalinationIsraelDrinking10SEP20229210202201JUL202240Low13
10HIGHRiverEgyptAgriculture30OCT20226865202201OCT202239High2
11LOWLakeJapanDrinking15NOV20229012202201OCT202238Low12
12MEDIUMGroundwaterMexicoIndustrial20DEC20227250202201OCT202237Moderate5
13LOWRainwaterIndiaDomestic05JAN20237825202301JAN202336Low8
14HIGHRiverIndiaAgriculture15JAN20227560202201JAN202248Moderate3
15LOWLakeCanadaDrinking10FEB20228520202201JAN202247Low9
16MEDIUMGroundwaterIndiaDrinking01MAR20226545202201JAN202246Moderate6
17LOWDesalinationUAEIndustrial20APR20229015202201APR202245Low11
18MEDIUMRainwaterBrazilAgriculture18MAY20227030202201APR202244Low7
19MEDIUMRiverUSAIndustrial05JUN20228055202201APR202243Moderate4
20LOWLakeGermanyDrinking12JUL20228818202201JUL202242Low10
21HIGHGroundwaterChinaAgriculture25AUG20226070202201JUL202241High1
22LOWDesalinationIsraelDrinking10SEP20229210202201JUL202240Low13
23HIGHRiverEgyptAgriculture30OCT20226865202201OCT202239High2
24LOWLakeJapanDrinking15NOV20229012202201OCT202238Low12
25MEDIUMGroundwaterMexicoIndustrial20DEC20227250202201OCT202237Moderate5
26LOWRainwaterIndiaDomestic05JAN20237825202301JAN202336Low8


13.PROC MERGE – DATA INTEGRATION

proc sort data=water_sources out=water_sources ;

    by Source_Type Country;

run;

proc print data=water_sources;

run;

OUTPUT:

ObsSource_TypeCountryUsageMonitoring_DateAvailabilityPollution_Level
1DesalinationIsraelDrinking10SEP20229210
2DesalinationUAEIndustrial20APR20229015
3GroundwaterChinaAgriculture25AUG20226070
4GroundwaterIndiaDrinking01MAR20226545
5GroundwaterMexicoIndustrial20DEC20227250
6LakeCanadaDrinking10FEB20228520
7LakeGermanyDrinking12JUL20228818
8LakeJapanDrinking15NOV20229012
9RainwaterBrazilAgriculture18MAY20227030
10RainwaterIndiaDomestic05JAN20237825
11RiverEgyptAgriculture30OCT20226865
12RiverIndiaAgriculture15JAN20227560
13RiverUSAIndustrial05JUN20228055

proc sort data=water_flagged out=water_flagged ;

    by Source_Type Country;

run;

proc print data=water_flagged;

run;

OUTPUT:

ObsRisk_FlagSource_TypeCountryUsageMonitoring_DateAvailabilityPollution_LevelYearQuarter_StartMonths_Since_MonitoringPollution_CategoryPollution_Rank
1LOWDesalinationIsraelDrinking10SEP20229210202201JUL202240Low13
2LOWDesalinationIsraelDrinking10SEP20229210202201JUL202240Low13
3LOWDesalinationUAEIndustrial20APR20229015202201APR202245Low11
4LOWDesalinationUAEIndustrial20APR20229015202201APR202245Low11
5HIGHGroundwaterChinaAgriculture25AUG20226070202201JUL202241High1
6HIGHGroundwaterChinaAgriculture25AUG20226070202201JUL202241High1
7MEDIUMGroundwaterIndiaDrinking01MAR20226545202201JAN202246Moderate6
8MEDIUMGroundwaterIndiaDrinking01MAR20226545202201JAN202246Moderate6
9MEDIUMGroundwaterMexicoIndustrial20DEC20227250202201OCT202237Moderate5
10MEDIUMGroundwaterMexicoIndustrial20DEC20227250202201OCT202237Moderate5
11LOWLakeCanadaDrinking10FEB20228520202201JAN202247Low9
12LOWLakeCanadaDrinking10FEB20228520202201JAN202247Low9
13LOWLakeGermanyDrinking12JUL20228818202201JUL202242Low10
14LOWLakeGermanyDrinking12JUL20228818202201JUL202242Low10
15LOWLakeJapanDrinking15NOV20229012202201OCT202238Low12
16LOWLakeJapanDrinking15NOV20229012202201OCT202238Low12
17MEDIUMRainwaterBrazilAgriculture18MAY20227030202201APR202244Low7
18MEDIUMRainwaterBrazilAgriculture18MAY20227030202201APR202244Low7
19LOWRainwaterIndiaDomestic05JAN20237825202301JAN202336Low8
20LOWRainwaterIndiaDomestic05JAN20237825202301JAN202336Low8
21HIGHRiverEgyptAgriculture30OCT20226865202201OCT202239High2
22HIGHRiverEgyptAgriculture30OCT20226865202201OCT202239High2
23HIGHRiverIndiaAgriculture15JAN20227560202201JAN202248Moderate3
24HIGHRiverIndiaAgriculture15JAN20227560202201JAN202248Moderate3
25MEDIUMRiverUSAIndustrial05JUN20228055202201APR202243Moderate4
26MEDIUMRiverUSAIndustrial05JUN20228055202201APR202243Moderate4


data water_merged;

    merge water_sources(in=a)

          water_flagged(in=b);

    by Source_Type Country;

    if a and b;

run;

proc print data=water_merged;

run;

OUTPUT:

ObsSource_TypeCountryUsageMonitoring_DateAvailabilityPollution_LevelRisk_FlagYearQuarter_StartMonths_Since_MonitoringPollution_CategoryPollution_Rank
1DesalinationIsraelDrinking10SEP20229210LOW202201JUL202240Low13
2DesalinationIsraelDrinking10SEP20229210LOW202201JUL202240Low13
3DesalinationUAEIndustrial20APR20229015LOW202201APR202245Low11
4DesalinationUAEIndustrial20APR20229015LOW202201APR202245Low11
5GroundwaterChinaAgriculture25AUG20226070HIGH202201JUL202241High1
6GroundwaterChinaAgriculture25AUG20226070HIGH202201JUL202241High1
7GroundwaterIndiaDrinking01MAR20226545MEDIUM202201JAN202246Moderate6
8GroundwaterIndiaDrinking01MAR20226545MEDIUM202201JAN202246Moderate6
9GroundwaterMexicoIndustrial20DEC20227250MEDIUM202201OCT202237Moderate5
10GroundwaterMexicoIndustrial20DEC20227250MEDIUM202201OCT202237Moderate5
11LakeCanadaDrinking10FEB20228520LOW202201JAN202247Low9
12LakeCanadaDrinking10FEB20228520LOW202201JAN202247Low9
13LakeGermanyDrinking12JUL20228818LOW202201JUL202242Low10
14LakeGermanyDrinking12JUL20228818LOW202201JUL202242Low10
15LakeJapanDrinking15NOV20229012LOW202201OCT202238Low12
16LakeJapanDrinking15NOV20229012LOW202201OCT202238Low12
17RainwaterBrazilAgriculture18MAY20227030MEDIUM202201APR202244Low7
18RainwaterBrazilAgriculture18MAY20227030MEDIUM202201APR202244Low7
19RainwaterIndiaDomestic05JAN20237825LOW202301JAN202336Low8
20RainwaterIndiaDomestic05JAN20237825LOW202301JAN202336Low8
21RiverEgyptAgriculture30OCT20226865HIGH202201OCT202239High2
22RiverEgyptAgriculture30OCT20226865HIGH202201OCT202239High2
23RiverIndiaAgriculture15JAN20227560HIGH202201JAN202248Moderate3
24RiverIndiaAgriculture15JAN20227560HIGH202201JAN202248Moderate3
25RiverUSAIndustrial05JUN20228055MEDIUM202201APR202243Moderate4
26RiverUSAIndustrial05JUN20228055MEDIUM202201APR202243Moderate4


14.PROC SGPLOT – VISUALIZATION

proc sgplot data=water_flagged;

    vbar Source_Type / response=Pollution_Level stat=mean;

run;

OUTPUT:

The SGPlot Procedure


15.SYSTEM OPTIONS & LABELS

options nodate nonumber;


data water_labeled;

    set water_flagged;

    label Pollution_Level = "Pollution Index Score"

          Availability = "Water Availability Percentage";

run;

proc print data=water_labeled;

run;

OUTPUT:

ObsRisk_FlagSource_TypeCountryUsageMonitoring_DateAvailabilityPollution_LevelYearQuarter_StartMonths_Since_MonitoringPollution_CategoryPollution_Rank
1LOWDesalinationIsraelDrinking10SEP20229210202201JUL202240Low13
2LOWDesalinationIsraelDrinking10SEP20229210202201JUL202240Low13
3LOWDesalinationUAEIndustrial20APR20229015202201APR202245Low11
4LOWDesalinationUAEIndustrial20APR20229015202201APR202245Low11
5HIGHGroundwaterChinaAgriculture25AUG20226070202201JUL202241High1
6HIGHGroundwaterChinaAgriculture25AUG20226070202201JUL202241High1
7MEDIUMGroundwaterIndiaDrinking01MAR20226545202201JAN202246Moderate6
8MEDIUMGroundwaterIndiaDrinking01MAR20226545202201JAN202246Moderate6
9MEDIUMGroundwaterMexicoIndustrial20DEC20227250202201OCT202237Moderate5
10MEDIUMGroundwaterMexicoIndustrial20DEC20227250202201OCT202237Moderate5
11LOWLakeCanadaDrinking10FEB20228520202201JAN202247Low9
12LOWLakeCanadaDrinking10FEB20228520202201JAN202247Low9
13LOWLakeGermanyDrinking12JUL20228818202201JUL202242Low10
14LOWLakeGermanyDrinking12JUL20228818202201JUL202242Low10
15LOWLakeJapanDrinking15NOV20229012202201OCT202238Low12
16LOWLakeJapanDrinking15NOV20229012202201OCT202238Low12
17MEDIUMRainwaterBrazilAgriculture18MAY20227030202201APR202244Low7
18MEDIUMRainwaterBrazilAgriculture18MAY20227030202201APR202244Low7
19LOWRainwaterIndiaDomestic05JAN20237825202301JAN202336Low8
20LOWRainwaterIndiaDomestic05JAN20237825202301JAN202336Low8
21HIGHRiverEgyptAgriculture30OCT20226865202201OCT202239High2
22HIGHRiverEgyptAgriculture30OCT20226865202201OCT202239High2
23HIGHRiverIndiaAgriculture15JAN20227560202201JAN202248Moderate3
24HIGHRiverIndiaAgriculture15JAN20227560202201JAN202248Moderate3
25MEDIUMRiverUSAIndustrial05JUN20228055202201APR202243Moderate4
26MEDIUMRiverUSAIndustrial05JUN20228055202201APR202243Moderate4



To Visit My Previous Family Relations In India Dataset:Click Here
To Visit My Previous Shopping Malls in Hyderabad Dataset:Click Here
To Visit My Previous Temples Of india Dataset:Click Here
To Visit My Previous Analysis Of Money Dataset:Click Here  



Follow Us On : 


 


--->FOLLOW OUR BLOG FOR MORE INFORMATION.

--->PLEASE DO COMMENTS AND SHARE OUR BLOG.

No comments:

Post a Comment